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? STRUCTURAL ANALYSIS

. A SOURCE OF LARGE ERRORS IN CALCULATING
A

o SYSTEM FREQUENCIES

2 Robert M. Mains
= Department of Civil Engineering
Washington University
St. Louis, Missouri

Attention is called to errors in system frequency calculations resulting
from the use of non-diagonal mass matrices with eigenvalue routines that
replace the mass matrix with its eigenvalues before proceeding to the
calculation of system frequericies. The errors are illustrated in
several different solutions of an 18 degree-of-freedom system. What
can be done to avoid these errors is presented.

. PG LTS

o
e,
> In some gpecific instances recently, the consistent (Archer) mass are shown in Table 1,
,:; author has observed errors in the determination together with the eigenvalues of the consistent
3 of system frequencies by factors of 3 to 10. mass matrix,
Thase errors were costly in replacement or

I\ retrofit, so an investigation was undertaken Eight different solutions for eigenvaluss
. to determine the cause of the errors. In each were made with the results shown in Table 2, in
. case, the Archer formulation of consistent vhich
Al mass was computer generated, and so was the

" stiffness matrix. These matrices were then Column 1. Frequencies from 15" *K* !5". vith
; run through one of several widely used eigen- EIGN53/RMM, Mp = diagonal mass matrix

. value routines to get system frequencies and by eyeball.
mode shapes. If the stiffness and mass matrices .1
had been repetitive, all would have been well, 2. Frequencies from K * , with

y but in these cases both the stiffness and mass EIGRF/IMSL, wholly real.

e matrices had considerable texture (more than 1

b 1000 to 1 varfation in magnitudes), Further 3. Frequencies from K * Mg~, with

+ examination of the eigenvalue routines revealed EIGRF/IMSL, Mc = consistent mass per

P that they used the device of formulating Archer, wholly real,

k> *K® to achieve symmetry. For a g

’ diagonal mass matrix, is no problem, but 4. Frequencies from Hi" * K * Mp®, with
with the non-diagonal mass matrices generated EIGNS/RMM, = eigenvalues of Mo

¢ in the programs, the eigenvalue routines first arranged in near natural order by

s found the eigenvalues of the mass matrix and eyeball.

g used the inverse square roof of these eigen~ i

B values to get a diagonal . Unfortunately, 5. Frequencies from * K & HDA' with

*’2 the routines ordered the eigenvalues of the EIGN5/RMM, M, = diagonal mass

', mnass matrix and scrambled the coordinate order arranged in ascending order.
in the proceas. Since the eigenvalues of the _1g g
mass matrix constitute a transformed set of 6. Frequencies from * K & HB.A , with M
coordinates, they cannot be used to multiply EIGNS/RMM, = eigenvalues of i

t the untransformed stiffness coordinates. arranged in ascending order. .‘

o To study this problem further, the system 7. Frequencies from HTPJ? *K* H;g. wvith Ty

< shown in Fig. 1 was used. This aystem was EIGN5/RMM, M, = diagonal mass N i:':

Wy chosen for two reasons: first, the author had arranged in descending order. ,t_&

! used this system for several years as a check Y hfag
problem on different computers with cousistent 8. Frequencies from * K * M, with g
results; second, the stiffness had a range of EIGN5/RMM, HED = elgenvalues of My @
2250 to 1, and the mass had a range of 5400 to arranged in descending order, Ny
1. 1If the foregoing hypothesis were correct, A !
this system should show it strongly. The main EIGRF/IMSL "calculates eigenvalues and eigen- re Y
diagonals of stiffness, diagonal mass, and vectors of a real, general matrix," not s "'.‘ ‘
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required to be symmetric. Eigenvalues and
eigenvectors may be complex.

EIGN5/RMM calculates eigenvalues and eigen~
vectors from * K * . When M 18 not
diagonal, the eigenvalues of M are used
instead and are ordered ascending or des-
cending.

NBROOT, from the IBM system 360 Scientific Sub-
routine Package (SSRP), "finds the eigen-
values and eigenvectors of a real, square
non-symmetric matrix of the special form
Bl » A, vhere both B and A are real, sym-
metric matrices and B is positive def-
inite."” This routine calls EIGEN from the
SSRP to determine the eigenvalues of B,
orders them in descending order, and then
finds the eigenvalues of B™3 * A * B

In Table 2, the first two columns were
identical all the way. Columns 3 and 4 were
cloge to 1 and 2 for the lower third of the
frequencies and differed appreciably thereafter.
Columns 5 and 6 are close to each other in the
lower third, but a factor of 10 different from
1 and 2. The same comments apply to columms 7
and 8 as to 5 and 6.

The eigenvector sets for the various solu-~
tions were too voluminous to be reproduced here
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except for eigenvectors anumber one and two from
solutions 1 and 2, which are shown in Table 3.
While the frequencies from 1 and 2 were iden-
tical, the vector shapes were radically dif-
ferent, so that further calculations involving
the vector shapes (as for stress) would also

be different.

From the numbers in Table 2, it seems
clear that the use of a non-diagonal mase
matrix in dynamic system analysis can lead to
large errors if the eigenvalue routine uses
the eigenvalues of the naaa matrix in place of
the matrix. If the K * Ml formulation is used
with a routine like EIGRF/IMSL, the eigenvalues
are correct, but the eigenvectors are not
orthogonal and subsequent calculations need to
be modified. Both of these problems can be
gotten around if the non-diagonal mass matrix
is replaced by its triangulat decomposition
such that M'= L # LT, This replacement permits
the eigenvalue solution of L1 # R # LT, uhich
is symmetric and has orthogonal eigenvectors,
so that subsequent calculations can be carried
through the same as for a diagonal mass matrix.
The use of the triangular decomposition of the
mass matrix was called to the author's atten-
tion by Mr. Eugene Sevin of the Defense Nuclear
Agency, and the author gratefully acknowledges
this.

TABLE 1
Diagonals of Matrices Used

Diagonal Diagonal Diagonal of Eigenvalues
of Mass Consistent of Consistent

Stiffness 2 Mass Kass

1v/in 1b sec“/in 1b sec /1n 1b sec /1n

0.13491+407 0.77700400 0.57720+00 0.12211+00
0.98719+09 0.77700+01 0,77700+01 0.77447+01
0.76931407 0.77700400 0.57720+00 0.12211+00
0.50572+09 0.77700401 0.77700401 0.77447+01
0.16010408 0,77700+00 0.57720+00 0.12211400
0.52064+09 0.77700+01 0.77700401 0.77447+01
0,21801407 0,12950+402 0,12950+02 0,13430+02
0.30418+410 0,.42000404 0,42000+04 0.42000+04
0.23992407 0.12950402 0,12950402 0,13430402
0.22293+10 0.42000+04 0.42000+04 0.42000+04
0.31847+408 0,12950402 0.12950402 0.13430402
0.12500408 0,42000404 0.42000404 0.42000+04
0.13491407 O0.77700+00 0.57720+00 0.12277+00
0.98719+09 0.77700401 0,77700+01 0.82076+01
0,76931407 0.77700+00 0.57720+00 0,.12277+00
0.50572+09 0.77700+01 0,77700+01 0.82076+01
0.16010408 0.77700+00 0.57720+400 0,12277+00

0.52064+09 0.77700+01 0.7770C+01 0,82076+01
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TARLE 2 N
Prequencies for Different Solutions, Hz Lol
1 2 3 4 5. ¢ 7 8 R
8.50 8.50 8.50 8.51 0.95 0.95 0.75 0.80 AR
16.12 16,12 15.95 16.31 11,59 11.44 6.25 6.25 e
16,22 16,22 16.00 16.70  21.60  22.36 13,34 13.40 g ,
35.46 35.46 37.27  42.61 51.97 55.98  25.24 26.30 P T
50.46  50.46  S0.11  49.57  59.39  62.37  S54.41  53.67 R
M9 N9 122 1274 64.37 6445 94.25  93.00 Rose
126,7  126.7 1265  274.1  115.6 1152  97.08  199.3 PN
142.4 142.4 140.0  283.9 117.2 195.1 200.7 228.5 § N
484.1 484.1 584.3 1186, 201.4 220.8  279.0 265.5 ‘
485.6 485.6 587.5  1192. 217.1 248.8 473.8 855.8 -
T122.2 122.2 723.9 1264, 473.6  1188. 760.7 991,1 -!?-V-‘
763-9 763-9 T184.5 1301, 760-5 1 556' 864 .6 1186, stﬂ' .’
1293. 1293. 3039. 1334. 1378, 1830, 1009. 1836. s
1294, 1294. 3049. 1369. 2317. 2371, 2367. 2486. B
1306.7  1306.7 3221, 1786, 3215, 3149. 3119, 3054. M»..{
1306.8  1306.8 3226, 1814. 494121, 10285, 4120. 10317, R
1798.9  1796.9 3668, 1837. 4292.  10366. 4293,  10394. e
1799.2  1799.2  3705. 1861, 5692.  14319. 5692. 14280,
e
T e
Comparison of Eigenvectors .f;'.-
Bigenvector no.?1 Rigenvector no.2 .}i ‘
BIGHP EIGNS EIGRF EICNS b
+0.4T7561-02 -0.24729-01 +0.55669-01 +0,21024+00 AN
-0.13071-15 -0.60205-10 -0.38610-13 -0.23599-08 s
+0.34562-15 -0.74144-09 -0.94688-14 -0.60161-08 2
+0.11659-03 -0,27964-02 +0,58575-02 +0,25372-01 '
-0.20680-14 -0.32534-07 -0.11484-11 -0.70346-06 R
-0.12083-02 -0.66189-03 -0.99394-02 +0.71654-02 N
+0,82262-01 -0,26185-01 +0.11770+401 +0,26594+00
+0,08150-14 -0.16893-10 +0,17071-11 +0.17459-09
=0,45832-15 -0,23894-08 -0,20972-14 -0.91465-09 G
-0.24881-07 -0,83066-05 <0,36160-06 +0.70316-04 NS
-0.36048-13 -0,32728-07 =0,19227-10 -0.70646-06 k .
-0.15969+402 40.15354-01 +0,21944401 +0,15332-02 K
40,47581-02 -0,24729-01 +0.55669-01 +0.21024+00 ANt
+0.12481-15 -0,15504-09 -0.38603-13 -0,23962-08 20!
+0.27998-15 +0.42277-10 +0.91848-14 +0.57532-08 o
«0,11659-03 +0,60594-04 -0.58575-02 -0,22122-02 -
-0,22953-14 -0.32657-07 -0.11491-11 -0,70350-06 e
<0.12083-02 +0.62796-03 -0.99394-02 -0.37538-02 :\’.\ .
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DISCUSSION
Mr, Gupta, (IIT Research Institute): I was

curious as to which programs the two consultants
used. I am really skeptical in the sense that
there sre many commercial programs which are
available and usually they do try to solve
problems and show that they are able to solve
certain problems; but having a error of the
order of magnitude which you showed certainly

is not the answer.

Dr., Mains: In the case of the floor system the
programs that were used and the people doing the
analysis are a part of one of the largest
dynamic analysis operations in the country.
They purport to do this kind of thing all day
every day and I know that they have an
automatic consistent mass calculator built
into their programs. Their programs also
substitute the eigenvalues of the mass matrix
in that particular case. The other used a
commercially available program that is widely
used around the country. I know of three
companies that use this program routinely for
dynamic analysis. One of these was the
contractor involved in the blast test that I
spoke of, another is a large company in the

St. Louis area, and the third is a very large
company not very many miles south of here.

I have observed this and I am pretty sure of
my ground,

Mr, Paz, (University of Louisville):
I don't know if the problem I am going to

present is directly related to yours but we
also had trouble with s consistent mass matrix
some years ago. I suggested thst a student
who was working on a master's thesis compare
results using the consistent mass, a lumped
mass, and also what might be called the exact
solution of the Bernoulli-Euler equations.

He found tremendous differences., To test the
programs he used simple numbers like units for
everything, such as the modulus of elasticity
and he found tremendous differences in computing
the consistent mass, So I investigated this
further and made a series expansion of the
exact solution; I found out that the consistent
mass is the first two terms of the geries
expansion, where one term is the stiffness and
the other term would be the mass that we used
in the consistent. By using these simple
numbers to test the programs he was out of the
range of convergence of the series so this
explained why the consistent mass gave wrong
answers. This might not be your case because
you checked this with another program, it is
probably & question of programming. But I
thought it might be of interest to know that
because with consistent mess we have to be
careful in the convergence of the series that
actually represents these terms.
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Mg, Maing: One of the things I try very hard

to do with my classes is to make sure that the
students understand what they are doing. So

I make them go through dynamic analysis the
hard way with the hande-on operation of the
programs, so that they know what is going on at
each step and so that they come out of it with
a set of solved problems that they can use to
check out any black box they are subjected to
later on. When they go out from the University
to the job, quite routinely they are handed

a problem and told to put this on the computer
and get some snswers. They have no opportunity
to find out what the computer has on it,

I think this is s fairly widespread practice

I get feed back from it. Every studeat that
goes out and then comes back to visit a year
or two later tells me the same story.




RESEARCH METHOD OF THE EIGENMODES

AND GENERALIZED ELEMENTS OF A LINEAR MECHANICAL STRUCTURE

R. FILLOD Dr. Ing. and J. PIRANDA Dr, Ing.
Laboratoire de M8canique Appliquée, associé au CNRS, Besangon, France

The determination of the eigenfrequencies, eigenmodes and generalized
elements of a structure is fundamental in the study of its dynamic beha-
vior (e.g. fluttering of planes).

Of all the methods tested, those based on the appropriation of modes seem
to give the most accurate resulfs.

The experimental methods used today are often unreliable and do not al-
ways guarantee that all the eigenmodes corresponding to a given frequency
range have been isolated. The method which we suggest does not present
these drawbracks. This method is based on the appropriation method and
permits to determine the eigenvectors and generalized elements directly
by calculus from the forced responses to a given frequency.

I - DEFINITION OF APPROPRIATION

Appropriation consists of finding which ays-
tem of forces must be applied to a structure in
order to obtain :
- a response proportional to an eigenmode of the
associated conservative gystem ;

- the eigenfrequency corresponding to this mode.

Most experimental methods are based on the
fact that all points of the structure have the

quencies have been isolated. Basically the mini-
mum of the in phase response relative to the ex~
citation is detected by varying each applied
force and the excitation frequency successively.
This method offers the advantage of being well-
suited to automation but it is unsuccessful whe~
never the eigenfrequencies are too close to one
another.

With the method developed by D. CLERC [3] appro~

same phase angle when the excitation is appro- priate forces can be calculated directly from a :5’ *
priate. set of p responses at a given frequency related :f-“::tﬁ:
to p linearly independent excitation configura- :’,x“;
In the simplest methods, the experimenter tions. Such a method is systematic, it takes the R
proc.:eed? tentatively by modifying the level of information from all pickups into account and two oS
excitating forces and the frequency as best he close modes or more can easily be detected, but :‘_.\f
can in order to minimise the force and velocity a great amount of measurements and calculus is Ly
phase difference for all points, A method based required to determine one eigenmode. \."

r ¥ on this principle was tested by LEWIS and WRISLAY LD Y,
P{j [1] at the M.I.T. in 1950, TRIAL-NASH (4] had already used a less sophisti- ‘
) cated form of this idea as early as 1958, A
;E&.- A. DECK.[2] from the ONERA has developed an NN
v automatic method for appropriation which proceeds J.J. ANGELINI {5] introduced the matrix Ty.F cal- :';a:z

by successive approximations assuming that fre- culated from the real part V of p responses to p ?t




..

R R

A

linearly independent excitation configurations

stored in the matrix F. He takes advantage of

the vanishing property of the TW determinant
when the excitation frequency is eimilar to the
eigenfrequency. Such a method requires a great
deal number of measurements and only takes ac-
count of displacements at the excitation points.
Such methods have obvious drawbacks resulting ei-
ther from exploitation (number of measurements
required) or lack of efficiency (eigenmodes unde-
tected in the case of close frequancies).

The aim of this paper is to develop a pro-
cess allowing all the eigenmodes near the excita-
tion frequency to be located, then secured from
a limited set of measurements.

11 - Preliminary considerations

In f&rccd harmonic conditions, the move~
meut of a discrete linear system is defined by
the equation :

M By ¢ Ky = £ . oYY, m

M, B, K being the mass, damping and s’iffness ma-
trices respectively.

leads to
(X -0hMs juB) y=f @

To the damped initial system, we can asso~
ciate the conservative system defined by the ei-~

genproblem
(k- y=0, A=, 3)

from which we deduce :

-~ the modal matrix Y of aigenvectors %
= the spectral matrix A of eigenvalues xv

According as the eigenvectors are arbitra-
rily normed (s,) or relatively to the mase matrix
(’v)' we obtain the classical relations :

Trives, Tyxver, *2gey , Szkze u . Ae v (%)

where 1 is the diagonal matrix of the gensralized
masses, Y that of the generalized stiffness.

PR PRPEXN "W""“m“ .«.r o

. . '
T Pty N PR
' RN ""“‘"uf"é" : %‘gg%% N .':".‘:-f».v:-tﬂ :‘-

LA T LT ’er?’"’

The forced displacements of the damped
system can be decomposed on ths basis of the ei-
genvectors y, or s, of the associated conserva-
tive system, Then, we obtain :

,(A)-m"y.g or ,(u-&"z.z (5)
vich 2 =(A-AE+§v38) ) or & =( v =2 u +§/A0)"(6)
8 = Tymy baTznze u /2 y}2(7)

vhere B and b are the normed and non-normsd gene-
ralized damping metrices.

12 - Determination of appropriste forces

It is known [6] thet a linesr self-ad-
joint system can be appropriate to ap eigen cir-
cular frequency w, with a system of forces all
in phase (or anti phase). For exemple, at the
circular frequency @, » the wovement is described
by :

(k=2 M+ § /le):-f

if z=Z , ., "2 (K-Avlozv = 0 then

/B2,
ATz o, = iAD o2 . 8,
2,237,727 b.a 37X T80, ®

1f b is diagonal (Basile's hypothesis
veritied [7]), this force £, vill excite an eigen-

mode wvhich is out of phase in relation to the ex-
citation whatever the frequency.

or etill

lets=2.,¢

At the circular frequency we/X, the res-
ponse s to the appropriate excitation will be de-
fined by :

(%=Ae§vAB)g = £,

hence :

T2 (k200§ 7AB) 2. = b e,
CY =2 u +j/Rb).co J/AD o,

ce S
j/X‘. -Auwo-jﬁb
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All the points of the structure vibrate in
phase. The phase difference ¢ between the move-
ment and excitation force is defined by :

Aoy, ) .8,
Tty Ty

Reciprocally, assuming that s real force
vector £ is found, vhose response to any circu~
lar frequency is

y-mtl.

withV ., f ok W, £, and k = real constant,

(9)

tg b=

fovEejt

then f is an appropriate force to an eigenvector.
Indeed we have :

VeYR @ T R (@) real part of @
WeYJ (@) t! J (Q) imaginary part of Q.
1 diagonal matrix of general tera

Av'x'j',xaw

(Xv-l) +l3w

The above equality V.f=k W.f leads to

AL~A 8
v YV T
== }Tt.f -kr |- —5 Y.£
N ~
2 ...2
D= (Av-x) *xew
Y

LY

Multiplying this equation by |- D
ve obtain : '/x'aw N

[ o lee-e

Therefore there is an eigenvalue A v such that

(10)

A=
k= >,
.8,
The corresponding eigenvector is of the
form
]
(]
T-Y.f = a
o

Therefore, £ is proportional to the appro~
priate force to the \:"h eigenmode, For instance
fv is defined dy :

D
e~
V]

2
v

o

© ©

£ «My/X | B . which leads to TY.fv-/X

0

W

Q

Such result multiplied by an arbitrary cons-
T

tant is the same as equation (8) because Y-'-HY.
Congequently, if a force f can be found so
that V.f = kW.f, this force is appropriate to an
eigenmode of the structure, and the displacement
y is proportional to this eigenmode. This proper-
ty constitute the basis of the appropriation cri-

terion suggested.

k can be a double eigenvalue :

k_x-xv_x-xo
/Xew ﬂsw

In that case two linearly independent eigen-
vectors will correspond to this double value of
k.

0 V]
0 0
T T
Y.fv =l a, and Y. fo - .
. LB
0 1]

The force f found will then be £, or fo or
more generally a linear combination of both.
Such indetermination can slways be erased by se-
lecting another excitation frequency.

13 - Appropriation criterion when Basile's hvpo-

thesis is verified

p excitation configurations linearly inde~
pendant can be applied to the structure in p
points at a given w circular frequency and the
responges in phase and quadrature with the exci-
tation in n points be noted. The rvesponses in
phase and in quadrature as well as the forces
can be rearranged under matrix form resulting in
matrices V(n,p), W(n,p) and F(p,p) respectively.
We can assume for instance FsE, £ being the uni-
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With such linear system, a response to any
vector force "a" will be Va + jWa., An appropria-
te force to an eigenmode will be the vector "\,“
such that :

v.av-kwnv ()

In the case when the matrix of applied
forces % is not a unjty matrix, we can measure
responses in phase and quadrature '\\; and ; vhere
each column is a linear combination of the V and
W columns. We can therefore write them under the
form :

'V-V.%' and

V=w.¥.

We try to find the values of k such that :

'V'ﬁv - k'ﬁ‘:v for instance
~ LY
V¥ -k w?va\,

An appropriate force in this case is equi-

a .
valent to %.a\’. For simplicity, we now assume
that

FarF=k

In practice, we strictly cannot guarantee
equality (11). We try to find the vector "a" and
the scalar k such that V.a - kWa = € is minimum,
Let Tee = Ta (Tv - &Tw) (v - kW) a

To minimize Tee it is necessary to compare
Tee to a norm taking into account the amplitude
of the movement, We are led to minimize the pa-
rameter § .

s o —ee _ Ta(tv-kTw) (v-kwa
fvall + [wal Ta(vv+Tww a

The extremes of § are given by the zero of

the partial derivatives 3l | 0, i=1,...p and
Sa. ’ P
i

%ﬁ- = 0 which leads to

[Tvv-k (Tvwe T +k? Tiw=6 (FyveTuwy ] amo (12)
T1T

kK= TATWI (13)
a WWa

Ses HadiBd Zaleo i 4 i (U SR
o, OSSR TR A
\*' : ."‘-. o, ..J".".f "
:":- iy ‘-""‘-"." LA ST AN .r:'-,'.-'.-'.
N AL AP RS £ .‘w..\"ﬂ‘}".b"_u' MRS SO IS T A

S
[Ry RN

(12) is an eigenvalue problem in § non-linear in
relation to the parameter k, It suffices to find
which are the values k, of k making th.c smallest
eigenvalue § minimum., To each k,, there is a cor-
responding eigenvector "'\o“ vhich is the appro-

priate force to the ytb eigenmode. We check that

the equation (13) is satisfied for each solution
found,

14 - Form of the appropriate forces such that
V.a = k¥W.a when Basile's hypothesis is not veri-
fied

In this case in order to obtain V.a=kW.a at
A¥ )\, , complex forces ?R+jl'i must be applied.
We can show that the generalized forces appro~
priated to the vth eigenmode defined by

T . .
Z(FR + JFi) =f+] fi

are of the form

fp = -/wa+k(xw-xuw) £, k.ﬁbw«yw-).uw).
. . (14)

-/Ab kv/Xb

v v

k can be choosen such that fi is null vhen b is
diagonal, If for instance

A -y A=A
k= Wy w = v (15)
” l,\J\) B\N
The generalized forces are then written :
bI\J blv
v bav
- - 2 -
fr A1 b (1+k%) £; k/x| 0 «16)
nv bI'N
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In practice b, (i ¢ v) << bw’ furthermore
in the proximity of A # )\) , k# 0 ., Consequent-
ly, the imaginary force is negligible compared
to the real force, and the appropriation crite~
rion suggested may be applied at the proximity
of A = )\' even when Basile's hypothesis is not

verified.

11 - PRACTICAL CALCULATION OF APPROPRIATE FORCES

21 - § = £(k) curve plotting.

The calculation s carried out as followsls|:
Given a ko value of k (for example ko = 0), the
values of § solutions of the eigenproblem (12)
and the corresponding eigenvectors are deduced.
Then by increasing k and plotting § = f(k). We
get the diagram : (Fig.l)

b

kl kz k\) k

FIG.] Curves § = .£(k)

For each value k,, of k with § is minimum,
there is a corresponding force vector "lv" ap-
propriate to au eigenmode of the structure. Hav
is proportional to the eigenmode,

The appropriation to a mode is all the more
accurate as the corresponding value of § is smal-
ler.

Such calculation is comparatively long and
entails a lot of iterations to obtain a k, with

$ minimum.

A quicker alternative can be summarized as
follows : given an arbitrary initial values of

g 202 "ﬂm hiathdand CEFESREEEN X ™)
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k, the eigenproblem (12) can be solved and a
new value k'o of k calculated from the eigenvec-
tor obtained using the relation (13). The value
k'o obtained is very close to a k, value with 8
minimum, The value k can be obtained rapidly
through iteration,

In practice, two or three iterations are
sufficient to obtain fairly accurate values of

kv .

The method still gives good results when
two eigenfrequencies or more are close or equal,
Two k values or more are found to which two ap-
propriate forcés, or more, are associated.

A=A
shows that even when

The relation k =

two eigenvalues Xc and A y are equal, we still
have two separate values for k if BW#BW. Any
combination of the two obtained vectors is an
eigenvector. The two determined eigenvectors cor-
respond to the two modes for which the damping
coefficient Bov is minimum.The above relation
also infers that it is possible to obtain a
double value for k even if )‘c ¢ Xv . In this
case, two separate values for k are obtained by

changing the excitation frequency,

I11 - CALCULATION OF MASSES AND GENERALIZED DAM-
PINGS

The circular frequency w, = /Xv , generali-
zed mass L the damping 8 have to be determi-

ned for each eigenmode.

For that, after locating a frequency and
calculating the appropriate corresponding force
a8, ve apply this force to the structure, A step
to step predetermined frequency micro-sweeping
device records the system complex responses:

yw) = yk(w) + 3 yi(w) .

3] - . 2 I3
Eigen circular frequency wv and generalized
damping BW

determination.

Using the following method to determine w,

y ‘\“ .-,\:
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andsw\n obtained fairly satisfactory results. due to error effects in measurements and (21)

For a set of value of A # )\‘ , the appro- enables one to obtain oo accurately,
priate forco% is applied and

T’n =Yy AT
k()= T - A e
¢ Pwv

is plotted

i oY
Then k(A) = O gives A = )‘v and the slope

of the curve k(A) gives the generalized damping

BW :
A
dk. 1 ]
o = ®= ———— hence 8 = ——m—— (17)

3 ax vV dk
!. A-)t\’ /K’ .B\N /xv (Ex) A=, x\’ 9:
Y o0
% 32 - Generalized mass determination
4

o,
g
a RR

A E—
Xl ‘*‘ﬂ?ﬁ’é

W, Generalized mass and demping can be obtai-
ned by the diagram of complex power [9] Py and f %
o 2 P; as a function of 1 . ;: .
\ h e
o W ,,l)..‘i
3 P, =Ta, . P, = Ta .y, ™
Y RT N R oo Yi F16.2 Curves k(1) and complex power Q{,}
l For A ¢ A, » it is known [4] that : b ]
‘ R
E9e P = (4, - M (18) f;r‘r:'::?
-2 R \Y w 33 - Applications of the suggested method ::‘“(:5
154 P, = 2/ - /Db . (19) ?‘i'{;
x_. 1 v w Experimental checking of the method has E; ;égo
B L Hence for A = A , been carried out at the ONERA [10]. Fairly good -
dP results have been obtained using a plane sub~ ::;;,;,l
:\t PR =0, -T} - - uv\)’ (20) structure. Obtained results from numerical simu- Q.&.}\;‘T
- y lation by the finite elements method of a system ?‘51.:(
AN - . . : : b
-. Pi‘ ==b Wﬂ u\)vaw"x\) from which having close natural frequencies, are given here, ‘Q;;::&‘
bl P. This system is a clamped, free beam folded up as "g
, M, = /—x_—"-—- 21 shown Fig.3, It can be shown that such a struc- rage
Ty v 6\J'\’ ture evinces asSuccession of eigen-frequencies by ~ &::1
g 5-\‘ A simple geometric diagram allows to check pairs. ';1-;3;"
8 Z' i i “é;ﬂ;‘i
S the coherence of the results obtained (fig.2). The eigenfrequencies in each pair are all Z"*fli"
Wit oy
.:"i. The experiment shows that : the closer as 1,-1, gets smaller -
¢ Ty
2% -~ The curve k(A) (17) provides accurate va- 1 ‘.'>;.
.’\; lues for A, and B since all the points where 1; = ." <
T pickups have been placed are taken into account, - “;tl’k
i ( ! g W)
o - The values of 1 and ), given by (20) 2 r s
5 are nightag with errors which are due to the y /2 "'\-‘
M fact that —‘& varies very quickly in the proxi- F1G.3. Folded beam §or example T
¥ lityofA-Av; ‘S'
Y
" N - The extreme of Pi is slightly modified The first four eigen-frequencies of the , ’
8,
o)
M .fi‘.‘
b
:; A 10 \‘:‘;,u.
) *’ §‘:‘:‘a“
) ' "‘t,
3 gy
:-:. "n":ﬂ
"h‘ . ol
N e
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system are :

F,=120.8Hz

F.=119Hz 4

F|-l3.l Hz 3

Fz-l3.3ﬂz

In the finite elément method, three de-
grees of freedom are aasociated to each mode
(transverse, longitudinal and angular displace-
ments) which leads to a 12 degrees freedom sys—

tem when four elements are concerned.

In the generalized damping matrix introdu-
ced the value of the quality factor Q-w\)IB‘N
of all modes is 20 or about and coupled termes
are added between the first three modes.

The gubmatrix B is represented below

4.05 -0.54  =0.27
B = |=0.54  3.24 -0.81
-0.27° 0.8 27

The simulated testing was carried out as
follow : at a given frequency, responses to
forces equal r- 1 applied successively to each
transverse degree of freedom are computed. The
responges are stored into the V and W matrices
from which k = £()) is plotted.

The following graph is obtained by selec~-
ting an excitation frequency between the first

two eigenfrequencies (f = 13,2 Hz)

i

0.2

ky k2 0.3 k

F16.4 Curves § = F(k)

The two parabolic curves § = f(k) clearly
show that the system has two eigenfrequencies
located on both sides of the excitation frequen-

c¢y. Then the appropriate forces to the two

-B& 5' R

B T R, e

modes can be computed.

Force a, appropriate to. the first eigen-
mode is computed at an excitation frequency
equal to 12,13 Hz., A microsweeping from f=11,9Hz
to f=12.3 Hz gives the following curves (fig.5)
for k, TuVa, Tava.

Similary, force a, appropriate to the se~
cond eigenmode is computed at an excitation fre-
quency equal to 13.27 Hz, A microsweeping from
f=13.1 to £=13,5 Hz gives the results in fig.5.

F1G.5 k(\) and complex power. Modes 1 and 2

The generalized parameters of eigenmodes
aie obtained from relations (17) and (21), The
following table allows the computed results to
be compared with the exact values. w, B, u, Yi»
¢i’ are the circular frequency, the generalized
damping and mass the displacement and the rota-
tion of the ith cross-section. It can be seen
that results are obtained with good accuracy
though the two modes mre very close and strongly
coupled. It has also been verified that correct
results can be secured when error effects in mea-

'?.“‘. 'F *‘.‘ .,
;\"‘ Q"\ * .(
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suremsnts ars simulated.

Pirst Mode SQcpnd Mode
Exact Comprited | Exact Computed
Values Values Values values

w? | 6775 6775 7000 7000
8 {4.05 4.17 3.24 3.26
w |2.05 1073 2.1073 | o.181 0.183
Yy |16 =11.1 332 332
¢, {0.130 0.128 -1.39 -1.37
y,|7.8 7.91 131 134
02 0.127 0.126 -1,27 -1.25
vy | 26.2 26.2 -16.1 -12.4
03 0.123 0.122 -0.59 -0,57
Ya 8.63 8,65 14,6 16.6
¢‘ 0.1 0.1 0.07 0.09

IV - CONCLUSION

The suggested method has been tested twice
on a numerical computer, adding simulated errors
of measurements and on plane substructure [10] .
Even vhen two or moreneighbouring eigenfrequen-
cies are very closed together, the appropriate
force can be eassly calculated and the eigen-
modes restored with a negligible amount of er-
rors compatible with measurement accurary.

As a conclusion, the originality of the me-
thod can be summarised as follows : a single set
of measurements with given frequencies enables
one to determine the sppropriate force with se-
veral eigenmodes, and the determination of the
values of k such that § is minimum enables one
to locate these eigenfrequencies ; '

-~ multiplie or neighbouring are automatical-
ly detected even though eigenmodes are strongly
coupled by damping ;

- if we agres to make a fev measurements in
the proximity of an eigenfrequency, the diagram
in function of A of k, P, and P, enables one to
determine :
= the eigen-circular frequency w,
= the generaliszed damping Bw ;
= the generalized mass Hyy*

PR TSy (T
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Fig. 1 ~ Mass loaded sinply supported besm.

Generalized Coordinates

By defining generalized coordinates as in
Eq.(4), a structure's response may be charac-
terized in a more analytically convenient nota-

0 =% 4
vt = g4 4@ @
In Eq.(4),
‘1(3) are the mode shapes
qimthemliudeoordimw.
Us (4), the f motion for Fig.l
g (0,3 v of e £

My +Reqy = Flxyet) 45 0)

1€)
+M(x ,t) ${x).

Applying Hamilton's ogdncipu to Eq. (1), the (See Ref. [3].)

resulting equation l&‘#o‘i(‘)&-p%

n R e - & meoom - §
+¥’: il sx-x)=0 FOx,t) =M, LYy ¢y (=)

A solutin 2 M - MR :
mt?d?s:hflz )wlq()ﬂlybc (%, t) = -MK" Ly ¢5(x)
ﬂnllnhﬂnlﬂmsinlq(.':)
coefficients o

Yo (x.t) = A sicfTE sin ut &u.éxﬁh tems, the

Since chh is an approxima u solutiom, ldnti- . . Rz 1
e .qm Eq. (@) will ﬁ‘,mﬁm'i gD M, 0 ) M, Ky )] + Ky
m

variation of the integral, it h . Rz . .
solve for the meunl lo«hd i oi(xo)oj(xo) +M, ’1(*0)’ (‘o)l -0

Since /ni-u’ for the wnloaded beam,
di.vi.dlu Iqo.(G) by y:l.l:hamunuud set
of equations in l"o! tural frequency

ratio w,/w,. Shmﬂﬂ.ondouclonmm
for modiraely loaded structure, the frequancy
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Direct Msthod

The direct method is based on a concept
inow, as Hamilton’s law of action.

(See ReE (4] for dacadls). That av 1s stated
el
o
Sto(-r-\odc-gig) cylto-o m
Tad V are
Tay s [p(%)zdx-l-%(%)zd(x-X)
+E°LR;2 (3:)2 c(x-x)]
V=i i EI (g;;)zdx

15

x,t) = 7= sin ut, Eq.(7) be-
Auunf.ngy A, siny= s wt, Eq.(7)

-w’p%ainz (%) sinzuta%d:dt -

L e L B

M w?

o %si.nz (n-;x—°) sinzmtﬁ%dt -

®

'fgf w? ( ) A cos” ( ) sinitsA dt

SEECICE

sinutsA dult = 0.

o_r

By insisting that mtbezeroandinuqra
tingovu'aucycle (8)beca|u
mddividingby

ﬂ\emloadednatural

| :
° 1+ F?!?' sin? “'_Lﬁ -
+?L9(%) 2 (mr)2 coczt-‘!".ﬁ .
Discussion
A ke sl e 2 20 oy

_np:int was modeled using
finite elemnt an-

linply supported beam as listed in Table I.

mdd\e msw?ad\oor;muhngﬁubomms
radius of gyration was five percent of

the beam length. °
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Sy TARIE Fig. 3 is a plot of the loaded second Lar-d
i - ?s:cmd tural - e t:hemn:nalzlzetl C X
na versus -
! i et fpicin of e ailed s, g 3 shom e
" gener. tes me ves re- NN
A ode  Soloet o amte Elenent sults which are almost identical to the finite N
- ' ' element solution. Figs. 4 and 5 show plots of ,
\ normalized natural frequency versus normalized oA
i:' 1 664.05 664.05 positig:e for third and fourl:h modes. For 1;:!11':\‘1 e
Ll mode generalized coordinates answer AN
O 2 2656.2 2656.2 almost identical to the finite element answer y S
1 3 5976.5 5976.6 shile the direct method s & thod is in error. For the B
29 , coordinates an- e
b 4 10624. 10625. swer is in slight error, but still mch better N
. ) 5 16601. 16603. than the direct method. From Figs. 2-5 it ) 4
15 6 23906 23912 appears that the generalized coordinates solu- e
A0 . : tion gives bett:er results than the direct ERIN
X QP.. method for lower modes, with both methods in L
AN greater error for higher order modes. Table II AR
e shows maximm error tabulated for the direct o
) method and generalized coordinates. The direct
>, Fig. 2 is a plot of the loaded first method is as good as generalized coordinates e
. natural frequency divided by the unloaded for lower modes, but is in significantly
. first natural frequency versus the normalized greater error for higher modes. X
oIié position of the added mass. Ten modes are
28 considered in computing the first loaded nat- ; --.:;-'
,}'\; ural frequency by generalized coordinates. TARIE II. S
SN Fourt:edmiquesareusedinl"ig 2 to compute ,{
1o natural frequencies: Galerkin's method, gen- Maximm Error of the Direct Method and of the o
A eralized coordinates, direct method, and a Generalized Coordinates Analysis by
finite element solution. gst::en from Fig. 2,
NN generalized coordinates an: direct method’ )
: both agree very well with the finite element Maximm Error, Percent rode
J’.‘ solution. Galerkin's method is in consider- Mode Direct Method Generalized Coordinate ::-;'-\.
Xl able error and is felt to be inappropriate ',-‘f“.
"o for this analysis, and is therefore omitted 1 .02 .04 :,.: A
) from the rest of this discussion. 2 046 .037 . ..:
3 .5 .026
L. 4 N .003
v§-.
b "2 1.004
2%
& -
1.0 In summary, of the three analytical
- methods examined here generalized coordinates
o s method gives the best accuracy in computing
2\ o natural frequency. Generalized coordinates
\7y £ analysis has potential for three important
XA € o reasons: (1) A complicated structure may be
O g analyzed In terms of n ordinary differential
et 2eel equations, where n 1is the muber of modes
. £ requl.red (2) The matrix sizes can be much
2 smller since only those modes which lie with-
- ) i:l:cgﬁed ing g‘gxeinalizedtcoord:lg o
5 Us tes,
f-.,-.; %l one need’ mly know the modes, therefore
30 =" mgntmganymedmmdelanybutﬁlelocal
NG part of this structure of interest. If one
o " 8 = L T e mres can measure modes using one of the many avail-
+ 2 PIBITE TLEWENT SOLVTION able modal analysis mini-computer systems then
- - there is mo need to be concerned with boundary
&9y i % —JEmaran JRCR TR WY S conditions, and it is possible to analyze only
iy those subsections of interest in the airframe
: Fig. 2 - First natural ratio (51,
X ) plotted versus mass position by
& three methods; M, = 0.500L,
RN R = 0.05L.
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finite element model of the previous section In Teble III, it takes more time to p,f_-\.-..
Results of that analysis are summarized in nore modes because the algorithm re- i
v Tables III and IV. From Table III it is shown quires iteration for each mode. For the eigen- SN
that for computing anly the first few modes, value analysis, however, the cost is the same ‘r}..:}r\
: matrix iteration can yield significant cost for a given mmber of modes, and the G
a savings. Increas the criteria nuber of modes is equal to the mmber of L
. affects the lower modes by only a few percent, elements for this finite element model Y
while a more rigid convergence criterion im- ST
N the accuracy of the higher modes. It From Table IV, accuracy with € = .1 for ot .

3 may be that one should formlate convergence the first four modes is on the order of 1% k':\..
; criteria which vary with the modes, demanding With € = .01, accuracy is somewhat better, oG
N more accuracy for lower modes and less accuracy expeclally for the order modes, although RN
2 for higher modes. the sixth mode is s in considerable error. N N

L_f‘.,, ;
3 TARLE IIT. ig20es

3 Comparisons of the Computational Speeds of Matrix Iteration and Eigenvalue Analysis 5
p : %

, Nurber of Matrix Iteration Eigenvalue Execution Percent Reduction A
. Modes Execution Time, Sec Time, Sec @

2 €e=.1 €= 01 e=.1 e=.01 ‘:‘\-i:\‘-%

) 1 1.7 1.66 4.6 63 60 Qe
b QAR
4 2 2.2 2.21 4.6 51 47 PNty
,_ 3 2.8 2.79 4.6 38 3 { ]

. NP
G 4 3.4 3.39 4.6 25 19 T ; :
-: 5 4.2 4.38 4.6 9 -4 TN
,‘ 6 4.8 5.06 4.6 -.06 -20, N
L“'f‘;hh
< ik
N

3 SR

) TABLE IV. AN

Comparisms of the Accuracies of Matrix Iteration with Eigenvalue Analysis _ i

o &}'- \;
[ &

r Vatolx Teeratlon —— Elganvalue Analysis \ éx.

N Mode Natural Frequencies, Hz Natural Frequencies, Hz Percent Error ‘L' :.-
. e =1 €= .01 e=.1 €= .01 TR

LY St 1N
¢ 1 605.5 605.5 605.97 .07 .07 : @

A

- 2 2575 2630.8 2633 2.22 .08 RN
O '-..'-f."~$
- 3 5546 5517.5 5509 .67 15 A

H .~l ‘,l ~ .
" 4 10400 10193 10301 -.96 1.05 RN ¢

5 12128 14292 15365 -21.0 -7.0 @

", Y

. 6 86547 10096 22403 -61.0 -55.0 AN
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The reason for the success of matrix -
iteration is that maximm advantage is taken of
all that is known about the structure. In
general, matrix iteration is not a commn

gince it requires an initial estimate
for the mode shape. Usually, such an estimate
bmtte?di‘ielymilablzg de-
pends on accuracy O s."
However, indlecaseofloadedst:nx:mresmm
whidtmloacbdmdesmdmdeslmpesaxehm,
that initial "guess" is very close to the final
mode shape, so convergence is very rapid.

OONCLUSIONS

A desirable feature for an analytical
to be used in an estimate

gested vibration estimation pmcess
ﬁollowa (1) Use exis wunloaded
vibration data when le, collecting all
data without concem for mass simulations.

be analyzed using modal testing techniques.

(3) Apply a relatively simple algoritim to the
unloaded vibration response to get an estimate
of the loaded vibration :eeg:nsse Such a vi-
bration estimation the advantage
that design studies are possible for estimating
the best tion for the airbome optical
package. This iterative design proeess would
be prohibitively expensive when mass simula-
tions must be flight tested.

Only one of the analytical techmiques
ptesmtedte:eappearstoluvepomtialin
fulfilling these requirements. Galerkin's
P timmlik:imfo?da licgitidb\d?d
equa y t-
structure. ’nleditect::god

e oty h¥oues Aol drade.c o Jaielbiad 4

T e TR
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C AN

for correction of the unloaded mode shapes to
upgrade the accuracy of the solution.

Matrix iteration holds promise since the
mureof&:;mloadedsmismedm
advantage armderateloadhf
mvuwumygg so\dngforthe

cant

p\n:at:lmalspeedmdmutrat:ed ﬂxaecept

le corresponding acauracy. However, it is
ﬁelt that using matrix iteration in cmjmctim
with finite element analysis will yield only
limited success. The dmofdaumd
validation of the mode
mntofdneformstcmplicaﬁedaircnft
structures. It:is ted that use of gen-
eralized coordina conjunction with matrix
iteradmslnxldbesmdiedﬁrﬂtet.

LIST OF SYMBOLS

A:l.j = elements of
coefficient matrix

arbitrary constant in approximate
solution

Young's modulus
applied inertia force

coordinates

% -
E =
I-‘(xo ,t) =

I = beam cross-section moment of
inertia

finite element stiffness matrix
generalized stiffness

= beam length
Lagrangian density function

HNN
non

= finite element mass matrix
= generalized mass

mass of added mass load

P A
[ ]

o=
(]

muxber of modes
generalized coordinate

=]
]

radius of gyration of added msss
load

kinetic energy
initial time

final time

potential energy
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x = location of added mass load

Greek Symbols
§ = variational operator
d(x-xo) = dirac delta fimction

€ = matrix iteration convergence
criterion

¢ = bean mass density

¢; = mode shape

¥ = mode shape estimate for matrix
iteration

A; = uatrix iteration eigenvalue,

llu;,

w = loaded beam natural frequency
o, = nloaded beam natural frequency

w, = . frequency estimate for matrix
iteration

DISCUSSION

Mr, Smallwood, (Sandia Laboratories):

I gathered from the flavor of the talk that
the whole purpose is to determine the change
in the response of the structure when a sub-
structure is added to it. I was wondering

if you have considered the application of
mechanical impedance techniques for doing this
particular job? For example if you know the
unloaded motion of the structure at the
attachment point, if you know the mechanical
impedance of a substructure thst you will attach
to the structure,then you can determine the
motion of the interface with the substructure
attached to the principal structure.

Mr, Whaley: I haven't looked at impedance
techniques particularly for this problem but
that has been done by our group. Captain Bob
Davis did some of that on an aircraft to predict
its response once the laser was installed.

That sounds like something I would iike to
pursue.
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ROCKET MOTOR RESPONSE TO TRANSVERSE BLAST LOADING

Norris J. Huffington, Jr., and Henry L.Wisniewski R0y
U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

>
'
-Q The effects of propellant inertia and of internal pressurization on the
‘ structural response of solid propellant rocket motors subjected to
transverse air blast loading have been investigated, both analytically
w and numerically. The numerical predictions were accomplished using the
i BRL version of the PETROS 3.5 computer program, which employs the finite
v difference method to solve the equations governing finite amplitude
o elastoplastic response of thin shells, The response of a typical rocket
f& motor configuration was calculated for the limiting situations of the
& bare motor case and of the motor case containing the complete propellant
'::E; grain, each with no internal pressurization and with the pressurization
o resulting from propellant combustion. These calculations showed that the
:‘as unpressurized motors experience a much larger deformation than the
N pressurized motors for the same blast loading. The most significant result
o is the quantification of the greater vulnerability of rocket motors prior
!: to their ignition, whether on the launcher or as upper stages of in-flight
e missiles.
3
oY INTRODUCTION of an entire motor case including head and
‘ nozzle. However, the results to be presented
. This paper is concerned with analysis of in the sequel were obtained for a plane strain
L the vulnerability of solid propellant rocket cylinder in order to provide a comparison with
) motors to air blast loading in combination with results to be derived by the finite element
*\ other operational loads. In treating this analysis cited above.
Q subject it 1s appropriate to consider the
- methodology currently being employed in the The representation employed for the blast
& ; design of motors for interceptor missiles and loading includes both the diffraction and the
; artillery rockets [1]. This methodology may be drag phases of loading since both phases con-
characterized as a quasi-static two-dimensional tribute to the response to nuclear blast.
.; finite element modeling of longitudinal and Nevertheless, the methodology is equally appli-
Eg transverse slices through rocket motors cable for predicting response to blast from
“ty supplemented by a one-dimensional treatment of conventional weapons.
E radiation-induced stress wave propagation. The
ay Ballistic Research Laboratory is monitoring the The first author has also obtained an
Y augmentation of these finite element codes to analytical solution for the effect of internal
g permit a plane strain analysis of the response pressurization on the vibration frequencies of
e of a transverse slice of a motor (including the elastic plane strain cylinders. Although the
\J'{ viscoelastic propeliant grain) to side-on blast details of this analysis will be presented
g loading. elsewhere, the insights derived from this solu-
a.:;v tion assist in the interpretation of the numer-
Ny Additionally, the authors have conducted ical results acquired by use of the PETROS 3.5
‘gl a parallel investigation of this problem using code. |
‘N the BRL version of the PETROS 3.5 computer .
E program [2], which employs the finite differ- !
. ence method to solve the equations governing PROBLEM DEFINITION
1Y finite amplitude elastoplastic response of thin
‘3’ shells. Although this computer code cannot When resorting to numerical analysis one
~) "model the behavior of the propellant (except must naturally assign values to all parameters
e in a Tumped mass manner to be described) it appearing in the formulation. The values
\j does have the capability to treat the response selected below are not identified with any
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existing system but do fall within ranges of
practical interest.

A. Rocket Motor Parameters

A representative solid propellant rocket
motor cross section (see Fig. 1) was selected
for exercise of the PETROS 3.5 computer program
in its plane strain option. In addition to the
geometric data shown on this Figure, the
material property parameters listed in Table 1
were selected. The steel motor case was
assumed to have the 1inear strain hardening
unfaxial stress-strain characteristics shown

in Fig. 2 and to exhibit no strain-rate effects.

Bi-axial plastic flow was analyzed using the
von Mises yield criterfon and the associated
flow rule in accordance with the mechanical

sublayer model [3]. Although the propellant

0 for t < t.
-8(t-t,)
p(o,t) = [pr coso + ps(l-cose)]e for -90° < 6 < 90° (1)
Pge for 90° < |6] < 180°

6.35mm (0.250") CASE THICKNESS
Fig. 1. Rocket Motor Cross Section

T &‘- *:: 3
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is being modeled as a viscoelastic materfal in
the cited finite element analysis, the lumped
mass treatment of the propellant in the PETROS
3.5 calculations required use of only the
propellant density.

B. Blast Loading Model

ho Ihe b‘la:t }oading is 1ntr?d|‘n]:ed as aipllm
shock wave having an exponentia decay

tail, moving down from above as s{om in ﬁg. 1.
Although surface overpressures p(o,t) obtained
experimentally or by refined hydrodynamic
calculations can be readily introduced into the
PETROS 3.5 code, it is convenient to employ the
following functional representation for the
blast loading which includes the essential
aspects of wave reflection, diffraction, and
post-envelopment drag loading:
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> TABLE 1 IR X
g Material Properties g
p "(‘-‘:
’ Lnotor Case (Steel) :2_{3
. v
. Young's modulus |E. = 200 GPa = 29 x 10 psi ﬁ s
Poisson's ratio ve = 0.3 '
v Yield stress |0, = 483 Wa = 70,000 psi honoXe
N Mass density o, = 7850 kg/m* = 0.000735 1b sec?/in -
o o
o Propellant (Viscoelastic Solid) "
Young's modulus [E, = 689 MPa = 100,000 psi -
i Poisson's ratio [v, = 0.472 3:.-‘(;
:‘, Mass density pp = 1660 kg/m* = 0.000155 1b sec2/in" e

LA
? LT
,4' ”f'}
oo

5 18 it
P - 1 pS o .'J
3 U LR + m (3)
5";‘ !’“ T
ad 2 « R{} - cose )
. & t. -(—u-—)- (4) &
8 & 20 ‘ b
‘ 1 While response predictions have been made for K 3
* several values of incident overpressure, the ‘ﬁé.‘}
, A 1 ) results which follow have been obtained for one phlih
o 0 01 0 level of blast loading, the parameters for » |
o STRAIN which are listed in Table 2. (L5
. S ¥
' TABLE 2 ! L&
A Blast Wave Parameters N
"+ AN
i Parameter | SI Units | English Units AR
b Fig. 2. Postulated Unfaxia)l Stress-Strain % 340 w/s 13400 1n/sec ek
5 Curve for Motor Case Material Po 101 kPa 14.7 psi
3,
N where Py 79.3 kPa 1.5 psi
* Po = Smbient pressure ] 440 m/s | 17300 in/sec
, Pg * side-on overpressure of incident shock 8 4.35 s" 4.35 sec"
':‘ P, ® reflected peak overpressure P, 207 kPa 30.0 psi
N a_, = sonic velocity at ambient conditions
'.: o~ vy wmbient c on The value of the decay coefficient 2 was {cg -
M U = shock front velocity estimated from blast data curves [4] for a one P,
{ kiloton nuclear weapon. 2
! t, = arrival time of shock front N
‘i C. Internal Loadin RS
: R tside radius of cyld Ny ’
¥ " ou radius cylinder In addition to response predictions using R : 3
r 8 = decay coefficient the foregoing external loading, which would Ry ,\_-z
correspond to the pre-ignition response for the L%
and rocket motor stage under consideration, calcu- i. hat
3 lations have also been performed for cases .
Tp, + &p where the motor had an additional internal i
:a P = 29, Tpo—#ii (2) pressurization p, (produced by propellant ot
1.3 o s combustion) prior to this blast loading. For '-{f'& N
T the most part the value p, = €.89 MPa Tiooo VA
psi) has been used for this internal pressure. N %
; Wy
o d
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although a limited study of the effect of
varying this parameter will also be reported.

FINITE DIFFERENCE MODELING
A. Computational Grid

The finite difference grid employed for all
the PETROS 3.5 calculations is shown in Fig. 3.
Since both the responding structure and the
applied loads are symmetric with respect to the
vertical plane, 1t is only necessary to model
the response of one-half of the cylinder.
Further, because there is no longitudinal
variation of any quantities involved in a
plane strain analysis there are only two
independent variables, the angles 6 and time,
resulting in quite economical computer runs.

6.

h CYCLE 0 A
A=A Oms
Fig. 3. Finite Difference Grid

B. Propellant Mass Effect

In the finite difference equations of
motion for the mesh point at 6 (m = integer)

the mass is that of the shell (motor case)
lying between the radial planes at angles
(g1 * 6,)/2 and (8 + em])/z. When it was

desired to take account of the mass of the

propellant in the response prediction the mass
of propellant lying between the same two radial
planes was added to the motor case mass at em.

Therefore, the effective mass will vary as a
function of the discrete angles On owing to the

slots in the star pattern of the propellant
grain (see Fig. 1). It is recognized that this
procedure provides a rather crude approximation
to the propellant mass effect since many two-
dimensional response modes are thereby inhib-
ited. Nevertheless it appears to be the most
rational procedure which does not entafl ex-
tensive modification of the shell response code.
The resistance of the propellant grain to
deformation is also neglected in this modeling,
an approximation which may not be too serious
owing to the relatively low strength of the
propellant in comparison to that of the steel
motor case (see Table 1) and the weakening
effect of the slots in the propellant grain.

YT W W T W X J
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C. Rigid Body Motion

There is another modeling consideration
which arises as a consequence of the assumption
that the motor case is in a state of plane
strain. In this stress state there can be no
resultant force acting tangential to a cross
section of the motor. Consequently, when a non-
self-equilibrating external loading (such as
results from side-on blast) is applied to the
cylinder a lateral acceleration results. In
order to appreciate the extent of deformation
the cylinder experiences it is necessary to
subtract out this "rigid body" component of the
motion. This was accomplished in the PETROS 3.5
calculations by recomputing the location of the
mass center at each time step and subtracting
this quantity from the position vector of each
mesh point before displaying graphical results.

NUMERICAL ANALYSIS RESULTS
A. Unpressurized Cylinders

In Fig. 4 the undeformed cylinder cross
section of the bare motor case is compared with
that at 30 ms, which is approximately the time
of maximum deflection. It should be emphasized
that in this figure the deflections are plotted
to the same scale as the initial deflection;
i.e., the deflections are large, entailing both
nonlinear geometric effects and elastoplastic
material behavior. The deflected cross section
corresponds principally to the lowest frequency
flexural mode for a ring or cylinder (the n = 2,
s = | mode, see Appendix). The deflection
responses of a point on the crown line (8 = 0°)
of cylinders having no interna) pressurization
are shown in Fig. 5, for both the bare motor
case and the motor configuration of Fig. 1
(where the effect of propellant mass has been
included as described above). As expected, the
effect of the propellant is to reduce both the
amplitude and frequency of the response.

INITIAL
CONFIGURATION

DEFORMED
CYLINDER

) -

CYCLE 1250
30 ms

Fig. 4. Deflection Pattern for Unpressurized
Bare Cylinder
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The predicted circumferential strains at the motor case) are nearly symmetric with
the crown line are displayed in Fig. 6. Since respect to the zero strain line it may be in-
the curves for the inner and outer surfaces (of ferred that the response is mostly flexural,
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Fig. 6. Circumferential Strains at 6 = 0° for No Internal Pressurization [A’Z;
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Fig. 7. Acceleration at 6 = 0° for Unpressurized Motor Case Containing Propellant
400 r T T T T T T T {
— -1 10000 -
“. m m - N.
~ - -
] e
- - :
A TN :
2 o i H 4 o8
S it [HETET I
at
" | | w
- -1 -l
 -200 | | K {1 &
(% -
< " | ! | { oo
-400 | ” i
' } [ | ] { } } . | N «20 000
0 10 20 30 40 50
TIME (ms)
Fig. 8. Acceleration at 6 = 180° for Unpressurized Motor Case Containing Propellant
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which is consistent with Fig. 4. Similar
strain variations were obtained at 6 = 90° and
180°. At 192 ms, by which time all plastic
deformation had ceased, the external load was
removed and an artificial damping was introduced
to rapidly dissipate the remaining kinetic
energy. In this manner it was possible to
identify the values of residual deflection and
residual strains indicated on Figs 5 and 6,
respectively.

For the motor case containing propellant
it is also of interest to estimate the normal
stresses acting at the interface between motor
case and propellant. This can be done in a
manner consistent with the lumped mass model by
multiplying the element of propellant mass
assigned to a nodal point by the absolute
acceleration of the nodal point and dividing
by the appropriate interface surface area. The
acceleration histories* of the nodal points at
6 = 0° and & = 180° are shown in Figs. 7 and 8,

NCEE T RN Y VR BN K AN LW LAV VAN S G L RARFLELE

respectively. Tensile interface stresses are
associated with positive accelerations at 6 = 0°
and negative accelerations at 6 = 180°. The
maximum of these accelerations is -496 m/s®
{-19500 in/sec?) corresponding to a tensile
stress of 80.2 kPa (11.6 psi) at 6 = 180°,
While interface stresses of this magnitude
should not cause debonding of the propellant,
conclusions regarding bond failure should be
deferred until the results of the two-dimen-
sional finite element analysis become
available. :

» B. Effect of Internal Pressure

When treating cases of cylinders with
internal pressurization (due to propellant
combustion) a quasi-static PETROS 3.5 run was
made at each pressurization level to establish
the initial conditions of deflection and stress
extant prior to arrival of the blast wave.
These quasi-static solutions, which are plotted
in negative time in Fig. 9, are fully damped

-p; = 6.89 MPa (1000 psi ) ; WITHOUT PROPELLANT

------ p; * 6.89 MPa (1000 psi ); WITH PROPELLANT
—-—-= p; *3.45MPa ( 500 psi ) ; WITHOUT PROPELLANT
1.0 04
0.5 -4 .02
T 1 3
£ o 0 £
3 1 z
= 0.5 o
i -1-.025
b [TV ]
s . e
a0 o
: H-04°
-
".5 — - 06
-10 50

TIME (ms)
Fig. 9. Deflection at 6 = 0° with Internal Pressurization

‘The presence of high frequency oscillations in these plots may appear suspicious in view of the

rather low frequency deflection response in Fig. 5.

However, relatively low amplitude extensional

modes (the s = 2 family discussed in the Appendix) when amplified by the square of their large

circular frequencies (as s effectively done when calculating accelerations) can become dominant in
the manner shown in Figs. 7 and 8. Love [5] remarks that such modes would probably be difficult to
excite. It appears that diffracting a shock wave around a cylinder is quite effective in exciting

these high frequency modes.
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before the blast loading 1s initfated at

time = 0. The transient responses to the
standard blast pulse are plotted in positive
time for three cases: the motor bottle with
and without propellant having an internal
pressure of 6.89 MPa (1000 psi), which is
understood to be a representative operating
pressure for a rocket motor, and the motor
without propellant with half the above internal
pressure which was run to study the effect of
varying the internal pressure. One sees that
increasing the internal pressure raises the
frequency of oscillation and decreases the
amplitude of response (provided the shell
remains elastic). At the onerating pressure
adding propellant lowers the frequency of
response and has little effect on the ampli-
tude.

Figure 10 presents cross section views of
cylinder response at two times for the case
represented by the solid curve in Fig. 9. In
these views the departure from the initial
unpressurized configuration has been magnified
by a factor of one hundred. For Cycle 0 we
see the axisymmetric extensional deformation
pattern which exists immediately before the
arrvival of the blast loading. With the 6.89
MPa (1000 psi) internal pressure the circum-
ferential membrane stress is 91 percent of the
uniaxial yield stress while the maximum bend-
ing stresses are less than one percent of this
quantity. The cross section for Cycle 377,
which may be associated with the second 'lnuard
peak displacement shown in Fig. 9, exhibits an
essentially inextensional flexural deformation

INITIAL UNPRESSURIZED CYLINDER

CYCLE O
Oms 9.048 ms

Fig. 10. Cross Sections of Pressurized Cylinder

CYCLE 377

Cycle 0. The corresponding quasi-static and
transient strains at the crown line are depicted
in Fig. 11. Clearly, the blast-induced strain
fluctuations are small in comparison to the
pressurization-induced strain. In fact, in
spite of the large pre-stressing, none of the
problems treated in Fig. 9 were predicted to
experience permanent deformation of the motor
case as a result of the blast loading.

g g

e

superposed upon the extensional pattern for

L NNER ' SURFACE b
201 _‘;,MW B
OUTER SURFACE 7
J6F .
T F -
[ ]
v a12) -
@
‘ - —
4
< ‘08t ~
[ 4
| g e
= -
.04} -
o -
0 [ [ | [ § [ 4 [ [ |
0 10 20 30 40 50
TIME (ms)

Fig. 11. Circumferential Strain at 6 = 0° for Py = 6.89 MPa (1000 psi) Without Propellant
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2 The stiffening effect of internal .
pressurization is demonstrated in Fig. 12, which p; (i)
& shows the variation of maximum deflection of the 200 O 200 400 600 800 1000 1200
V) bare cylinder as a function of internal pressure 160 { T 1 1 T
>y for a constant external blast loading. The
i black dots on this figure are values obtained fon
: by PETROS 3.5 calculations and the curve is a L ) 1
4N Tine faired through these values. The curve is
~ dashed beyond p, = 8.48 MPa (1230 psi) to o} f3.1 4
K indicate that a different trend may be expected -
¥ after the internal pressure alone s sufficient "
. to produce yielding. The great magnification Z wol- N
of response in the neighborhood of Py = 0 is of > ¢
considerable practical significance. This can % 2
B> be readily explained in terms of Fig. 13, which w -
;‘t shows the dependence of natural frequencies [<]
RS 1'“’1 (= un’llz-n) of the lower inextensional ":’ 0 i
Ko modes discussed in the Appendix on the internal %
;3* pressure. One sees that this family of modes
& is strongly affected by the quasistatic ‘+_ _
v pressurization Py and that the lowest flexural
b4 mode frequency fz'] vanishes for Py =-0.214 MPa
\,; (-31.1 psi). This intercept on the p, axis
™ v represents the value of external pressure for \ /‘l.l
74 which static buckling of the cylinder would o — L A
g occur without any additional blast loading. o 2 4 6 s
The actual blast loading can be decomposed into pj (MPa)
a transient uniformly distributed external Fig. 13. Effect of Internal Pressure on
3] Certain Inextensional Mode
b, Frequencies
s INTERNAL PRESSURE »; (psi)
iy 0 500 1000 1500 pressure and a non-uniform transient loading.
& 80 ET—T=T=Tepr—pp—p—p—r=—r—T—r= 3.2 The latter serves to deform the cylinder from
the initial circular cross section (analogous
1 to a large initial imperfection) while the
;,z _ uniform component provides a nonlinear amplifi-
' 2.8 cation of response if its magnitude is a
b § significant fraction of the pressure required
% for static buckling. For the blast loading
3 60 4242 employed in the PETROS 3.5 calculations the
g. T 2 temporal variation of the uniform component is
- L] a g shown in Fig. 14. This pressure component
i z = reaches a maximum of 0.119 MPa (17.3 psi), which
44 ] 7 2'05 is 55.6% of the static buckling pressure, and
o S - = decays slowly with respect to the period of the
k. w ] fundamental bending mode (39.3 ms) so there is
o L0 4163 ample time for a large deflection to occur.
:'_. 8 - For large internal pressurization the circum-
s, s i o ferential membrane stresses remain tensile in
' 3 Ji122 spite of the blast loading so there is no near-
= 25 buckling effect. In fact, consonant with the
- P - z raising of the frequency spectrum of the in-
y s x extensional modes with increasing p,, there is
3’4 20H o082 a decrease in response amplitude (at least until
At { 4 Py alone causes plastic yfelding). For
o completeness it should be noted that the
4 WITHOUT PROPELLANT 0.4 extensional family of vibration modes (s = 2)
' whose frequencies are defined by Eq. {A-3) of
K the Appendix are quite insensitive to
X 0 (1] variation of Py» as indicated by Fig. 15.
“ 0 2 4 é [ ]
) INTERNAL PRESSURE p, ( MPo)
h: Fig. 12. Effect of Internal Pressure on Peak
,’* Response
* 29
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, CONCLUDING REMARKS _H.‘ o
| SOy,
L g ¢ 1 The finite amplitude elastoplastic shell :",‘:. VAR
: 42 response code PETROS 3.5, while not capable of e d
fully representing the response of a rocket e
o - motor contafning propellant, has provided use- (‘
. ful baseline data for evaluating predictions o
N derived with other models. The linearized K;\ Y
; 5 ‘ . analytical model referred to in the Appendix *;: 2
\ 3,2 provides insight into the meaning of the g g
N - results of the nonlinear numerical analysis. N, v
k4 o - " 23
* = The response of a typical rocket motor - e
> configuration was calculated for the limiting ey
3 ‘ J situations of the bare motor case and of the !
w 2,2 motor case containing the complete propellant N
8 grain, each with no internal pressurization >l
w and with the pressurization resulting from N A
- 7 propellant combustion. It was found that the PO
unpressurized motors had a much larger defor- gy
' 1,2 mation than the pressurized motors. Also, for —
r 1 the motors containing propellant it was -
; ¢ possible to obtain an estimate of the tensile g By
y E 02 stress to which the propellant/case bond would Q'J-z.-&::
P 2 - be subjected. RN
\ i
' The most significant result is the quanti- reedel
. i - fication of the greater vulnerability of rocket Dt
motors prior to their ignition, whether on the "
L . . . Tauncher or as upper stages of in-flight s -
: o missiles. NP
: 0 2 4 6 s R Ce
o, (MPo) RRO8se:
> 1Y
; Fig. 15. Effect of Internal Pressure on .*-*\ WL
iy Frequencies of Extensional Modes S
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The small amplitude elastic oscillations
of internally pressurized plane strain cylinders
have been investigated and, while the formula-
tion will not be presented herein, certain
results which are useful for interpreting the
numerical solutions obtained with the PETROS 3.5
code will be stated.

Let v(e,t) and w(6,t) be the tangential and
radial components of deflection, respectively.
Then a free vibration mode consists of a
deflection component pair of the form

L An,s cos né sin(mn.st + wn,s) (A-1)

Vs = Bpg STn o sinfuy t+y ) (A-2)

where n = 0,1,2,3,4, ... and s = 1,2. The
circular frequencies W5 are determined from

the equation

W

s * [%,1 + (1429)n? + k(l-nz)2

2 3 w1k %
t [(1+n’) +4(24q)qn2+2k(1-n?) +k?(1-n?) ] ‘]
(A-3)
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Appendix
VIBRATION CHARACTERISTICS OF PRESSURIZED ELASTIC CYLINDERS

h = thickness of cylinder
a = radius of mid-surface of cylinder

Eq. (A-3) provides two values of circular
frequency for each value of n; the smaller of
these is designated Wy 1 and the larger w2

The moda) amplitude coefficients An.s’ Bn,s
are not independent. If An.s is chosen
arbitrarily, then Bn,s is proportional to An.s
and to a rather complex function of Yn.s and q.
Since wp,} =W, " 0 the corresponding

displacements are not vibratory modes. The case
n=0,s =1 represents a static axisymmetric
expansion or contraction of the cylinder while
the case n = 1, s = 1 corresponds to a rigid
body translation of the cylinder in the direct-
jon of the 6 = 0° plane. For n> 2, s = 1 the

ratio Bn I/An 1 takes on values such that the

middle surface extension is negligible; i.e.,
this lower frequency family of modes can be
characterized as an essentially inextensional,
flexural set. The s = 2 family of modes, whose
lowest frequency is two orders of magnitude
greater than the fundamental flexural frequency
in the unpressurized case, may be characterized
as the extensional vibratory set which, in
general, also entail flexural stresses. The
n=0,s =2 mode of this set is the
axisymmetric breathing mode of the cylinder.
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y DISCUSSION
., Voice: Apparently you are going into s finite
=" element analysis would you tell us why the
3, existing code does not solve your problem?
"
Mr. Huffington: The existing code does not
A exactly solve the problem with the propellent
‘e in the wmotor case and we are not satisfied with
‘€ lumping the mass. We ignored the stiffness of
2 the propellent entirely. The properties of
; b the propellent that I showed revesled that it
b, is quite weak with respect to the strength
- of the motor case, s0 I don't think that
ignoring the stiffness is too serious. However
we wanted to carry out the analysis where the
- propellent 1is modeled as a viscoelastic solid
: and we have not done that in the model that I
o have shown.
29
_$: Voice: You also mentioned fairly good agreement
vith experimental data; could you quantify that?
Mr, Huffington: I didn't mesn to imply that I
-\) compared it with experimental data, I simply
b said that it is consistnet with the fact that
‘§ internal pressurization is known to produce a
:”' stiffening effect; just as blowing up an
K-.! intertube makes the torus stiffer. We don't
ol have any data to mske a comparison at the
present time. oy
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EXPERIMENTAL AND THEORETICAL
DYNAMIC ANALYSIS

Sy
<
> OF
o CARBON-GRAPHITE COMPOSITE SHELLS
" & A. Harari and B. E. Sandman
Naval Underwater Systems Center
o Newport, Rhode Island 02840
‘l
i A comparison between experimental and theoretical models of
A3 a carbon-graphite/honeycomb composite shell vibrating in air
‘ and submerged in water is presented. Mode shapes and reso-
nant frequencies are identified according to theory and ex-
periment both for in-air and in-water vibration. Excellent
YA agreement is exemplified.
"‘t INTRODUCTION above discussion is purely qualitative
Y in nature, the indications are that the
. In addition to the well-known ad- carbon graphite composite may offer
vantages of utilizing composite mate- considerable advantages in the area of
”,:) rials in the fabrication of light- noise reduction. FExperimental and "
e weight, high-strength structures, compo- analytical studies were conducted to o
‘ site materials also exhibit properties determine the dynamic characteristics R
3 which are desirable in terms of reducing of a carbon-graphite shell in air and ;
oM structural vibration and noise transmis- in water. The analytical study is
B sion. In particular, a carbon-graphite, based on the formulation described in 5
" fiber/epoxy matrix composite exhibits Ref. [3]. Comparison between the ex- PRz
both high rigidity and high internal perimental and anal{tical results is b
N dmpini [1] which are desirable charac- contained in the following description W reryy
ot & teristics in the design of a structure of the current investigation. A
which displays high impedance to dyna- ¢
‘; mic disturbing forces and low trans- THEORETICAL COMPOSITE SHELL ANALYSIS ’ g
B Y migsion of d ic energy. Sandwich Q&; i
1 cylindrical shells have been designed The shell structure consists of . '.-‘il?;
ol and fabricated with carbon-graphite three layers of orthotropic materials, iy '!-'S;v
/ fiber composite facings and honeycomb as shown in Fig. 1. The analysis of e
e cores for light-weight, high-strength the shell utilizes Hamilton's principle s
A applications. It is apparent that the to derive the equations of motion. PU
% determination of the dynamic character- - Continuity of the displacements is AT
%9 istics of these shells in terms of noise enforced at the interface between the PO
e transmission and radiation 1s essential core and the layers. Transverse shear b ey
N for the overall assessment of their deformation is considered and higher a0
"' application. The inherent characteris- order terms are retained in order to
tics of the carbon graphite composite make the analytical model valid for » |
p! shells offer possible solutions and thick shells. The partial differential S
.i benefiting factors in reducing the equations can be written in the follow- Rid
\ levels of farfield radiated noise and ing manner: RrCk
"o structural-borne noise transmission. LD = -(P + F) gx%j
Qpld X
. The high levels of structural stiffness where L is a (5 x 5) matrix differen- "i&‘
e high levels ol struc e tial operator, and D is the (5 x 1) R

1 and internal damping provide the possi-
bility of reduced levels of radiated
' noise, and the properties of the layered
'S composite construction with differing
velocitieg of longitudinal wave propa-

.\;’ gation in each layer impedes the path

R of transmission [2] for high frequency

A components of noise. Although the
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N containing the displacement components and the D__ are the model components of
* u, v, w and shear angles u;, vy with R displaceﬂ?ﬂt&i The externaé go:cen and
. ressure loading are expanded into
L denoting the mean radius of the shell. gourier's components, For a given ex-
) P symbolizes the induced fluid pressure ternal force and frequency of excita-
s loading (5 x 1) vector, P =0, and F q y
i43 tion, the solution to a truncated set
is the externally applied force (5 x 1) of linear algebraic equations yields
E vector. the amplitude response. T@e elements
) The solution for a simply supported of analysis emplgyedfare directly applé-
shell is found by expanding the dis- cable to t?e stng of the vibrationian
placement vector in the following respon;e ol san ig shells. Bo;h n-
manner: air and in-water vffrations can edcon-
D p elut sidered without difficulty. In order
1 =11 XanPmn® to assess the validity of the theoreti-
mn cal model outlined above, experimental
i where tests w::e p:rfor?ed forbin-sir ggd }n-
water vibration of a carbon-graphite
P - Xm = |cosoytcosne 0 honeycomb sandwich shell. Subsequently,
% sina £cosno the comparison of theory and experiment
- m provides the validation phase of this
sina rcosné . a <MTR study.
’ cosum!,cosne n L
0 sinumesinne
? CORE
) FACING
| 1
* 1 R:5.89
: | [ -
: : Far00™
; ]
‘ b
-} jo—
r < L‘zou J
\ 4
) f 1
' 1 it I
o { F11.0e i 1
‘ | B b {
i P | I
! b=0.562" |
g SHELL SECTIONS ' i
: -
L
i Fig. 1 - Sandwich shell and experimental fixture configuration
EXPERIMENT gove:ent is g:riiai}y ighib}ced. The
oundary condition is therefore an
approximation to the analytical boundary
Figure 1 gives an illustrated out- condition which assumes zero tangential
1ine of the test fixture which was used digplacement at the edges of the shell.
for the dynamic excitation of the car- The material properties of the shell
bon-graphite shell, The shell is were taken from tables prepared by the
mounted between two massive supporting manufacturers, The aluminum honeycomb
end-plates, The edges of the shell are properties were taken from tables pre-
: constrained in the radial direction, pared by "Honeycomb Company of America,
4 allowed free rotation, and allowed to Inc."”. The carbon-graphite properties
N move in the axial direction. In the were taken from tables prepared by
circumferential direction the shell is "Fiberite Corporation”. The material
allowed to move, but, due to friction and geometrical progerties of the shell
: enhanced by the radial force, this are as shown in Table 1.
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TABLE 1

Carbon-Graphite/Honeycomb Sandwich Shell Properties

Parameters

h, Thickness (cm)

Ex' Tensilezmodulua in axial direction
(dyn/cm®)

E

9° Tensile modulus 13 circumferential
direction (dyn/cm¢)
Exe' (Poissog ratio) x (Tensile modulus)
(dyn/cm<) -
Gyg+ Shear modulus (dyn/cmz)
sz, Shear modulus (dyn/cmz)

20" Shear modulus (dyn/cmz)

G
P, density (kg/ma)

Top Layer Bottom Layer Core
0.33 0.35 1.78 J
0.55x10%2 0.55x10!2 0
1.03x10!2 1.03x1012 0
0.21x1012 0.21x1012 0
0.31x10!2 0.31x1012 )

-- - 0.93x10!°
-- -- 0.55x101°
0.23x10% 0.23x10*  ]o.25x10°

Resonant frequencies of the shell in
air and in water were identified by
locating the low points in the plot of
shell impedance during a frequency
sweep of sinusoidal excitation. Al-
though the shell excitation and response
was monitored at the approximate center-
span of the shell, it was found that
low-level anti-gymmetric modes agpeared
in the response spectrum. This is
probably due to errors in both the loca-
tion of the shaker and a lack of com~
plete shell configuration symmetry.

The mode type corresponding to a given
resonant frequency was determined by
mapging the vibrating surface of the
shell with a hand-held accelerometer.

It was found that the mode shape was
relatively insensitive to a hand-held
accelerometer both in air and in water.
Also it was determined that the resonant
frequency of an in-water mode was not
strongly influenced by the depth of
submergence in the neighborhood of the
surface of the acoustic tank, This
factor allowed relative ease in the
identification of in-water shell modes
with a hand-held accelerometer while
the shell was near the surface of the
water. It 1is noted that not all modes
of the shell were necessarily identi-
fied in a given frequency range. In
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particular, due to low levels of re-
sponse, no circumferential breathing
(n=0) type modes were found.

DISCUSSION OF ANALYTICAL AND EXPERI-
MERTAL RESULTS

Table 2 lists and illustrates the
resonant frequencies and corresponding
mode types as obtained by theory and
experiment for vibration of the carbon-
graphite/honeycomb sandwich shell in
air. The theoretical frequencies were
obtained by performing a discrete nu-
merical frequency sweep with a digital
computer program of the equations which
provide the theoretical solution. Al-
though there exists some disparity at
the lower frequencies, which may be
attributed to the boundary conditions,
the overall agreement is seen to be ex-
cellent. The agreement is indeed re-
markable in view of the fact that an
exact knowledge of the shell properties
is not established and the properties
used in the theory are "good" estimates.
Table 3 presents the results of theory
and experiment as they were obtained
for in-water vibration. Again, the
agreement between theory and erperiment
is remarkably good with the exception
of only one or two frequencies.
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R TABLE 2

) Comparison of Theoretical and Experimental
I Resonant Frequencies for In-air Vibration of
;1 Carbon-Graphite/Honeycomb Composite Shell

\

? MODE TYPE FREQUENCY (Hz)

(m,n) EXPERIMENT | THEORY

N

A (1,2) 1053 1210
ﬂ; (1,1 1195 1650
Q (1,3 1938 2016
) (2,3 2363 2650
\Y
; (1,4 3072 3050
L3 .
y 2,4 33e2 3400
ey 3,3 3650 3700
) 1,5) 4026 4028
& :

g
\ TABLE 3

Comparison of Theoretical and Experimental Resonant

-
-

- Frequencies for In-water Vibration of Carbon-Graphite/
N Honeycomb Composite Shell

y MODE TYPE FREQUENCY (Hz)

5 (m,n) EXPERIMENT | THEORY
- 1,2 537 616

» a,1) 757 820

& (1,3) 1033 1120

R (2,3 1324 1560
“ (1,4) 1717 1786

%

= (3,3 1993 2252
(1,5) 2344 2520
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USE OF SHOCK SPECTRA TO EVALUATE
JITTER OF A FLEXIBLE MANEUVERING SPACECRAFT

William J. Kacena

Martin Marietta Corporation
Denver, Colorado

Structural dynamic analysts are responsible for evaluating the
effects of vibration on the operation of displacement sensitive
spacecraft instruments. One example is an optical pointing instru-
ment that is vibrating because an orbital maneuver has just been
performed. This paper shows that a residual displacement shock
spectrum of the rotational acceleration time history defines the
vibration modes and the maneuvers which are critical to pointing
accuracy. In addition, geversl realistic maneuvers are discussed
and their effects on vibration are compared.

INTRODUCTION

The performance of displacement sensitive
instruments on a spacecraft may be degraded by
waneuver induced vibration, or jitter. Just as
a wiggled camera gives a blurry picture, a vi-
brating star sensor may produce a distorted
recoxrd of star location. Any precision align-
ment instrument that operates on optical prin-
cipals to record or transmit from an inertial
platform in space (be it a star sensor, camera,
telescope, antenna, laser, or a variety of
other sensors) is subject to vibratory pointing
error. When large control torques are used,
spacecraft optimization studies must consider
which torque time historiea can best achieve the
desired maneuver without introducing excessive
jitter. This paper shows that a residual dis-
placement shock spectrum of the resulting accel-
eration time history provides necessary data for
such a study.

The pointing error in each vibration mode
results from golving a differential equation.
With appropriate assumptions about the forcing
function, each modal equation is driven by a
modal constant times the spacecraft rotational
acceleration time history. Given a maneuver
history, the envelope of its residual displace-
ment shock response spectrum accounts for changes
in the time scale that can interchange spectral
peaks and valleys, and the effects of various
modes are compared by multiplying the envelope
value at each modal frequency by the modal con-
stant. In addition to defining which modes are
important to pointing accuracy, the shock spec-
trum approach identifies the time scale for a
family of similar maneuvers that produces nearly
worst case results. The presence of spectral
peaks at the critical modal frequencies provides

this identification.

When structural dynamic analysts conduct
these worst mode and worst maneuver identifica-
tion studies, closed loop control studies can
evaluate pointing performance directly without
the need for retaining uninteresting modes or
searching for a bad maneuver. Hence, these
identification studies can repregent a consi-
derable cost savings in route to a correct
interpretation of spacecraft pointing perfor-
mance.

An additional advantage of the shock aspec-
trum approach is the comparison of dissimilar
families of maneuvers. Trade study results of
this nature are of value in deciding what
control software is best suited to the pointing
operation of a particular spacecraft system.
For this reason, a spectral comparison study for
dissimilar maneuvers typical of actual control
systems is presented on an envelope line basis.
Finally, the appendix summarizes an efficient
algorithm for determining the regidusl spectrum
on a digital computer.

NOMENCLATURE

Matrices

m) mass
k] stiffness
} generalized mass

n
(J normal modes

A a transformation

T a geometric transformation
1 mass moments-of-inertia

P pointing transformation
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Vectors
{X} discrete coordinates
|F} discrete forcing functions
{q} generalized, modal coordinates
{w)} natural frequencies
{M} rigid-body moments
v} direction cosines
Symbols
a,b,B,C congtants
E envelope line
£ frequency (Hz)
J maximum jerk
P pointing error = [P]{X}
q generalized coordinate
S, £( ) Laplace transform notations
t independent time variable
T half the maneuver time

o
O3
g
;o.
@

Jerk, acceleration, rate and angle
of maneuver

a time gtep

w frequency (rad/sec)

[
”

APPROXIMATE EQUATIONS OF MOTION

The linear equations of motion for the
maneuver excited vibration of a spacecraft are

e {5} e} - 0} oo

When the free system normal modes and natural
frequencies are used to uncouple the equations,
(1) becomes .

{1} + (o}~ t'“gjl[ﬂt {ro} @

Several assumptions about the behavior of the
control system allow us to simplify the forcing
function to the more useable form

{F(t)} - {COnstant} 0w, 3)

where 8(t) is the angular acceleration time
history about the maneuver axis of the space-
craft. '

Ruler's moment equations [1] for rigid-
body dynamice involve angular acceleration
terms and terms which include products of
angular rates. For relatively small angle
maneuvers of a spacecraft with an active con-
trol system, the rates are generally small,
and the nonlinear rate product terms can be
neglected compared to the acceleration terms.
This same agsumption i8 implied whenever linear
rigid-body modes of a free syatem are used for
structural dynamic analyses. With this approxi-
mation the rigid-body rotational dynamics are

written as
{«} - (1344} @)

vwhere the M's are external moments, the I's

- ® ot a .

A second assumption is that the control
logic executes the maneuver with correlated
accelerationg about the body axes. In other
words, the angular acceleration axis in a body
coordinate system is a constant, and the
acceleration vector ig written as

{fw} - {v} o, (5)

vhere {V} is a vector of direction cosines for
the body-fixed rotation axis. A combination of
(4) and (5) gives

{no} - [(1{v} do (6)

The rigid-body moments are related to the
discrete forces and moments applied to struc~
tural node pojnts through a geometric trans-
formation [T] .

{u(t)} - (1) {r(t)} m

Then (6) and (7) combine to yield

1 {v} 6w = [1] {r(:)} (8)

Finally, (8) is solved for {F(t))} to achieve
the form of (3)

{fr} = (A1011{v} o - [a){uo)o

But what is [A) ? The columns of lA] are
arrangements of body forces which, when pre-
multiplied by {T] , will give a unit moment on
the x, y and z axes, respectively. In general,
[T]* f!] is singular, and constraint equations
associated with the detailed control torque
logic must be applied before (8) can be solved
for {A}.

For esrly system design studies, where
this kind of analysis is most likely to be
used, the control torque logic is unknown, and

[A] cannot be determined directly. However,
a atraight forward approach is to arbitrarily
choose one of the many [A] matrices that satis-
fies both (7) and (9). Although this may seem
like a gross simplification, this author's
experience shows that for real systems there
is little difference in the modal forcing
functions, regardless which [A] is selected.
One reason for this is that control torques are
generally lower frequency than the structure,
and the free elastic structure responds as
though it is driven by a bage-motion at the
CG which results from the applied torques.
Some discretfon in the choice of [A] is recom-
mended in the form of the guidelines below:

1) forces should be applied to atiff
structure near the actual control
force locations;

2) forces should not be applied to the
ends of deployed appendages, unless
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evaluation, unless the actual control Acceleration
forces are in that area.

Finally, (9) snd (2) are combined to form )
: the approximate modsl equations of motion 1.0 -
'1 t J °
{:1'} . {uz q} . [...][0] [a] [1] {v} 1) .
° time
- {s} o, (10) 0
where (B! 1is a constant associated with a par- -1.0
ticular body axis of rotation. For a kaown -
maneuver acceleration about a known axis, the T
modal responses {q} are determined from (10).
a) Rectangular Wave
POINTING RESPONSE SPECTRUM
The discrete response displacements in the l::ponu
ith mode of vibration are 10 8/ f)z
.
x,®} = {8} ¢, ® 1) 2
Generally, the modal pointing error of the
scientific instrument of interest can be
written as
1073
- (21 {8,} 9, e, 4© a2
where the row matrix [P] constructs the pointing -4
10 £(He)
error as a linear combination of the system
deflections. This transformation to performance 1 2 ' 5 10
coordinates says that a aingle number for each | I
mode, (PP)., can be used in a closed loop con- b) Spectr um £o for T = 1.0 sec
trol unulyhn to evaluate pointing performance i {
directly. However, intermediste analyses are 1 |
necessary to identify which vibration modes 1|
and which maneuvers create pointing problems. [
{
To this end, we combine (10) and (12) for Response | :
the ith mode of vibration 107} ~N 1
v . . ~ !
b, twip, =2 )8, §(e) = c, B(r) 13) | 2
-2 . 8/ (wf)
10 © 4
The parameter of interest is the maximum magni-
tude of the pointing error, p, after the maney-
ver is over. Since the equations like (13) for -3
all modes of vibration differ only in the mag~ 10
nitudes of the constants C and ¢),, a residual T
displacement shock .pecttum of o(b is 2 con-
venient way to compare the modal effects as 10-"
functions of natural frequencies. This dis- - £(s)
placement spectrum may look something like that 1 2 s 10 ‘
for the rectangular wave shown in Fig, 1. ¢) Spectrum for T = 0.8 sec :‘ (o2
The figure illustrates that the spectrum
has peaks at some frequencies and valleys at Fig. 1 - Residual Displacement Spectra j
others. In addition, an envelope curve, which q‘:{
decreases with increasing frequency, bounds all dominant spacecraft modes. Zero dasping is § :t,
the peaks. Fig. 1(c) shows that, when the time assumed in equation (13) and in the spectral ) :‘ i
scale on the forcing function is changed to results of Fig. 1. This assumption is mede to ]
represent a smaller maneuver, the same envelope avert the ever-present problem of defending the ) o
line results, but peaks may occur where valleys selection of a smell yet specific value for NN S
used to exist. These results show that the structursl demping. In addition, showing that » ;]
envelope line, and not the spectrum, is the . pointing performence is good for sero damping Oy
proper rationale for identifying critical modes. eliminates the need for a vibration settling 2 Q :
The frequency scale from 1 to 10 Hz 1s used in time requirement prior to pointing instrument . &
the figure for illustrstion purposes omly. operation. ;
For some spacecraft, & different range (say k

from 5 to 50 Hz) will better represent the
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For very simple maneuvers, like the rec-
tangular wave of Fig. 1, the residual displace-
ment spectrum of equation (13) is easily deter-
mined by hand using Laplace transforms [2] .
However, slight increases in waveform complexity
dictate the use of a numerical solution on a
high-speed digital computer. A simple computa-
tionally efficient algorithm for determination
of this spectrum is described in the Appendix.
Before describing the spectra of other maneuver
time histories, a discussion of real maneuver
waveforms ig in order,

TYPICAL MANEUVERS CHARACTERIZED

Actual maneuvers typically have accelera-
tion time histories that look like the simple
waveforms of Fig. 2. In general, structural
and power considerations within the control
system itself limit accelerations as indicated
by the rectangular wave., In many cases, the
same considerations result in jerk ( 9 ) limits
as indicated by the finite slope of the trape-
zoidal wave. Time gaps are depicted with thesge
wvaveforms to illustrate that control systems
may aleo have velocity or momentum limits that
can cause the starting and stopping pulses to
be separated by a period of constant velocity
rotation. However, the velocity limit can be

a) Rectangular Wave

T

2

J AN

r
= 7,

¥

b) Trapezoidal Wave

1 A
= t

c) Triangular Wave

g tPla fyig®s Yy 2t 3 i AP i % B A Ry

reached before the acceleration limit to give

a triangular wave with a time gap. The triangu-
lar wave shown with no gap implies that there
are small angle maneuvers for which neither
velocity nor acceleration limits are reached.

These waveforms are all shown symmetric to
characterize the maneuvers of most interest as
those for which the spacecraft has approximately
the same angular velocity before and after the
maneuver. This implies that the maneuver angle
is small and that the residual body rate vector
(which corrects for orbit effects) retains al-
most the same amplitude and inertial direction
that existed before the maneuver. That is not
to say that this analysis approach is limited
to symmetric waveforms (it is not); but rather,
that most maneuvers are approximately symmetric.

Notice, also, that the waveforms presented
in Fig. 2 have a high frequency dither riding
on the basic pulses. It illustrates that a
control system produces high frequency oscilla-
tions in addition to the basic maneuver. These
oscillations may be related to noise, sampling
or command frequencies or feedback of structural
vibrations. Although these effects exist and
may be somewhat maneyver dependent, they are
best evaluated in a closed-loop control
analysis.

(-]

d) Triangular Wave (No Gap)

1

e) Smooth Waveform

Fig. 2 - Typical Maneuver Accelerstion Time Histories
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a) Sine Jerk b) 1 - cosine Jerk c) Sine Acceleration

Fig. 3 - Smooth Acceleration Waveforms

Our objective with the shock spectrum technique
is screening the basic maneuvers to determine
which meneuvers and which vibration modes are
bad for pointing. This way the expensive end-
to-end control analysis can be limited to cri-
tical maneuvers and key modes when evaluating
instrument pointing performance.

Finally, Fig. 2(e) indicates that sophisti-
cated control logic may command jerk time his-
tories that are tailored to produce a smooth
acceleration. Fig. 3 illustrates that sequential
jerk pulses having equations O = J sinwe
and = J/2 (l-cos 2 wt) are reagonable
examples of this, while the acceleration equa-
tion § = 8, ®i0 w/2 1s not because the jerk

is discontinuous at the beginning and the end
of the maneuver. The following section compares
the effects these two smooth waveforms along
with the simple pulses from Fig. 2 on a residual
displacement spectrum basis.

MANEUVER SPECTRA COMPARED

We saw in Fig. 1 that the envelopes for
rectangular pulses without sime gaps are accel-
eration dominated, 0,10 §/£<. When triangular
and trapezoidal pulses without time gaps are
similarly investigated the envelopes for both

aan

ot N9

"Jt"‘"‘."ﬁ{‘ 2% o8t 'g".q:' PETR

are jerk controlled at 0,021 Jlf3. However,
there is & transition frequency between the
acceleration and jerk controlled envelopes as
illustrated in Fig. 4. The acceleration enve-~
lope controls below £ = 0.21 J /Sm, and

jerk envelope prevails above this frequency.
Fig. 5 depicts typical triangular and trape-
zoidal spectra: the peaks of the triangular
spectrum are more regular relative to the
envelope line. Changes in the time scales
for these pulses may interchange peaks and
valleys, just as observed for rectangular
pulses.

When time gaps are added to the rectangu-
lar waves, the spectrum becomes irregular
relative to the envelope, but the same enve-
lope equation is retained. However, the addi-
tion of time gaps to trisnguler and trapezoid-
al waveforms not only creates amn irregular
spectrum, but generally increases the envelope
line to 0.032 J/£3. This result is relatively
independent of the magnitude of the time gap;
but when T (from Fig. 2) is an even multiple
of T, the_envelope equations return to
0.021 J/£°, Trapezoidal waveforms with time
gaps and for which the top time (Tz in Fig. 2)

is a multiple of the rise time do not produce
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Displacement Spectra

RO
h

Pk i
-.'u"\.q..
Sty St
5 't )

(s
’



P e ey e e g

L ¥ ™

the higher envelope lines either. Since control
systems do not produce perfectly clean wave-
forms, it is expected that imperfections in

the lccelgration waveforms will yield the

0.032 J/£° envelope equation even when a per-
fect triangle or trapezoid without a time gap

is commanded.

A typical spectrum for a smooth accelera-
tion waveform is presented in Fig. 6. Despite
envglope lines that are approximately 0.02
J/£7, these spectra are dominated by a valley
near f = 47/T that is several Hz wide and two
orders of magnitude less than the overall
envelope. This result suggests that shaped
acceleration pulses are desirable because they
excite the structure less. However, Fig.7
ghows that when the forcing function is & series
of ramps rather than a smooth curve, the wide
valley becomes two smaller ones. This result
indicates that a noisy maneuver history may
give considerably less benefit than Fig. 6
suggests, as digital command updates may produce
this kind of waveform distortion. A time gap
in the smooth waveform causes the envelope
to increase slightly, but the deep wide valley
is retained.

Based on all these results, the general
envelope lines are summarized in Table 1.
Although the smooth pulses produce lower re-
sponges for the same jerk, they are not capable
of producing the same angles and angular rates
in the same time without going to higher jerks
and accelerations.

Table 1 - Envelope Lines Summariged

Wave Descript’/on Eavelope
Equation 1

Rectangle 0.10 5/f2
Triangle 0.021 J/€
Trapezoid 0.021 J/£
Trisngle with gap 0.032 J/£
Trapezoid with gap 0.032 J/ f3
Sine Jerk 0.022 /€
Q1 - cos) Jerk 0.020 J/€
Sine Jerk with gap 0.028 3/£
(1 - cos) Jerk with

gap 0.023 3/¢3

Table 2 presents a different perspective by
comparing the maneuvers on a basis of achieving
the same angle and rate capability in the same
time. This shows that from an overall envelope
standpoint, triangular waves are easiest on the
structure - either with or without the time
gaps. For high frequencies and long times
(£T>2), all waveforms except the rectangle
have an overall envelope within 40% of one
another. Hence, there is little penalty in the
adverse frequency ranges if a smooth waveform
is used to detune critical modes.

Residual
Response

10-2 ‘\ )
\\ T=2.5 l_l:‘\/
N

Sine Jerk

\""‘4 NN TR )

1073} \\ ,
[ 0022 3/€
! N
N
w-aE_ \\
L N
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1071 Big
[ Valley
-6 . lﬂAﬂM
10 1 2 o 5
Frequency (Hz)
Fig. 6 Big Valley from Smoothness
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Jexrk
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Table 2 - Maneuvers Compared for Equal Angle and Rate Capability :'\..: \

» ..'}-"::".

' Maneuver Acceleration Waveforms :-’:_-:.: X

3 3 Parameter Rectangle Triangle Trapegoid® | Sin Jerk (l=-cos) Jerk LS

Rt :

N Angle [ 0 0 0 ) )

& Rate 6/T e/t o/t 8/T 8/T e

& _.c‘,‘- H
" Acceleration 9/'1‘2 2 0/'1.‘2 48/ (3'1'2) 2 0/'1'2 2 0/'1'2 E-.- 14
% R
'4', Jerk ©o 4 0/1° 16 0/(31%) | 270/1° 86/ ',.]i.\ N
o] ‘ -

3 f@ -
Envelope ( z = 0/(fT) ) ST s
> Equation 0.10 z£fT 0.084 =z 0.11 = 0.14 z 0.16 2 ‘4-"}-"';*

s Pt ate s
- ‘e !
o With Gap 0.0 2f7 | 013z | 0,172 0.8z [0.18 2 :g}-';'.:
k2 ’;;".:?'
S IS D

v ~ g . LA

*T a2 Tl + Tz & 2 '1‘1- '1'2 ( a typical trapezoid ) 9
. .‘). e

- CONCLUSIONS frequency characteristics of the particular L‘-'\'\ ;
35 control system must be evaluated on an indivi- " \:b:

) A residual displacement shock spectrum of dual basis (perhaps using the residual spec- NAA S
$. the rotational acceleration time history (&) trum tool) to determine if the elaborate jerk !.‘J_&I'
f‘ is shown to be a convenient technique for commands are worth the additional spacecraft S «
xX evaluating the effect of maneuvering on the cost.

performance of displacement sensitive instru- ; -

s ments. The response spectrum for virtually any APPENDIX - COMPUTER ALGORITHM FOR RESIDUAL o, X
:.' maneuver is enveloped by all the curves DISPLACEMENT SPECTRUM fs. ‘(‘:

: A3
;_ B " 0.032 3 /13 A ramp forcing function is assumed be- ’ ,‘Ex..
<. Jer max 2 tween sequential time history samples to give ; ’: :_7
L. - - b T
35 E,cceleration = 010 5ux/f. (14) :l;znungle degree -of-freedom equation of mo Lt

. 2 ¥
E =0.186 /(£ )

. velocity max 3 wzq = a + bt (15) TN
o where T is the time required to reach the . ;:'_-
< limiting velocity. The potential effect of For initial conditions 1, and q,» the Laplace Jaa o)
2 each vibration mode on pointing performance is Transform of (15) is "-}.‘!7-;';-'
'i: estimated by evaluating the minimum E at the Lo . A
=z modal frequency and multiplying by a modal a/s8s + b/8” + 9,8 + q, R
- pointing constant defined herein. A "worst £(q) = 3 7 (16) -y

. case" estimate of the pointing error is the " tw -

M sum of all the modal effects. W,
v The inverse Transform of (16) at the »nd of Varate
" A closed-loop control analysis of point- each time step, 4t, ylelds :;;:-'f\?_-"
e ing may be desirable to evaluate the effects of 2 2 "w?,‘
" noise and phasing of the dominant modes. When q(at) = (a + b 4t)/w +(q -a/w”) cos(wat) \ %
) this is done, maneuvers that excite all the . 2 VN b

: significant modes should be analyzed. Such + (qo-b/u )sin(wat)/w an

maneuvers are selected by choosing a time scale R 2 2
- which results in a spectral peak very near the and q(at) = b/w” + (a - qou) sinwat)/w

frequency of each dominant mode., In this way,
a simple shock spectrum anslysis tool elimin-
ates using the expensive control analysis on
& trial-and-error basis to identify the point-
ing critical maneuvers.

L g

+ (&o-b/uz) cos (wat),

which are the initial conditions for the next
time step. When the forcing function is over,
the inverse of (16) is

.:w..- =P

The residual spectrum results presented 9,
q(t) = q, cos (wt) + TF sin (wt)

for typical waveforms show that significant (18)
:: performance advantages may result from smooth
J maneuvers. Vibration responses are reduced Finally, the spectrum value is the modulus of
> vhen the maneuver is adjusted to give a large (18), which is
M spectral valley in the region of critical modal 24,2, 21k
_‘ frequencies. However, noise and command Spectrum (W) = [qo 9, /w ] (19)
b
X 46
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f A résidual spectrum subroutine includes ‘-"_-;. »
the following steps: ¢ T

s 1) The frequencies, w, to be examined and é “‘S

the force and time values for each sample ,& \

of the forcing function are input data.
> Siuce vwe are not concerned sbout the re-~
sponse during the time the force is non-
gero, the time steps need not be equal.
P This allows great flexibility in

examining ramps and simple pulses.

2

Pl iy

2) Baged on these force and time values a, b
and At for each time step are calculated -
just once.

3) The original set of initial conditions q,
and q are set to zero.

A

4) Equation (17) is solved for the new set of
initial conditions, q_ and ¢‘|°.

=
£

5) Step 4 is repeated for each time step.

ot

6) Equation (19) is solved for the spectrum
magnitude, which is saved.

34

7) Steps 3 through 6 are repeated until the
spectrum at all frequencies is determined.

X AN e T

This algorithm is simple and minimizes the
required number of computations.
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BUCKLING OF EULER'S ROD IN THE PRESENCE OF ERGODIC RANDOM DAMPING

H. H. E. Leipholz

Department of Civil Engineering, Solid Mechanics Division
University of Waterloo

Waterloo, Ontario, Canada

damping fluctuation.

This paper is concerned with the buckling of Euler's rod in the
presence of ergodic random damping.
viscous damping, s.perposed by an ergodic random damping
fluctuation, it is shown that for a sufficiently small expected
value of the fluctuation's magnitude, almost certain asymptotic
stability can be guaranteed. Moreover, if the expected value
does not exceed a certain fraction of the damping’s mean value,
the critical value of the load for deterministic damping
remains the stability limit despite of the randomly superposed

For a small mean value of

Introduction

A modern approach to problems in mechanics
requires the inclusfon of the stochastic
aspect of these problems. This is specifi-
cally true for stability problems for which
randomly distributed imperfections are of
great influence with respect to the stability
limit. As far as the buckling of rods is con-
cerned, the randomness of the load [1], and
the randomness of the geometry (initial curva-
ture) [2] has previously been taken into
account. But it may also be of interest to
consider the buckling of the rod in the pres-
ence of ergodic, random damping. This is
desirable as in real systems there fs always
damping, and the mathematical model should sim-
ulate reality as closely as possible. Also,
the effect of damping has led to unexpected
results in many stability problems, for example
for rods subjected to follower forces [3].
Therefore, it seems to be advisable to investi-
gate random damping as well,

Consider Euler's rod shown in Figure 1.
Using the notations given in this figure, and
observing the boundary conditions, the follow-
ing boundary-eigenvalue problem is obtained:

av!V ¢ Py s miapy =0, "

v(o,t) = v(e,t) = v*(o,t) =

v'(e,t) = 0, (2)

Separation of the variables x and t can be
accomplished using

v(x,t) = £(t) sin -'% . (3)
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Figure 1 - Euler's Rod

a = const, flexural rigidity

m = mass per unit length

8 = coefficient of viscous demping
P = load

v = transversal deflection

Obviously, the boundary conditions (2) are
being satisfied by (3). The differentia)
equation (1) 1s satisfied {f f(t) is taken as
the solution of

- . 2
£+ g £ :? (Pe-P)f = 0. (4)

)

The behaviour of f(t) decides upon the stabili-
ty or instability of the rod. In (4), Pg is
Euler's buckiing load.
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\‘ For The solution of (14) is known to be :,_:‘:
'R ‘*',-: L
) p = B/2mw, (5) t .
; H) = f(e) - [ he-Da(n)f(nler, 05) DN
4 wo =7 (PE-p)/m , (6) ° ;
. equation (4) changes into where, in the case of (8), . 2
& - L.. o]
}: £+ prof +ulf =0 (n h(t) = Ce™™o® sin D wyt, (16) Ef?::
£ mene
: If damping is small, C = [mo(]_pz)llzl-l. D= (]_92)1/2. (a7 i {:{
%4 0<p<] (8) RNy
Obviously, h(t) coincides with (9). . -
> holds true, and the solution of (7) reads ; (15) fol1 W
3 : n (1) ttTow N
KL £(t) = ce ™ot sin(1-p2) Y4 t.  (9) . . ‘. . e 3
1o £() = foh(t) - [ h(t-clalo)f(r)de bt
§ This result for f(t) obviously indicates 0 ‘!3“.
B¥ stability. The Toad P, corresponding to this . k‘ :}!
o state of stability, follows from (5), (6) and - h{o)a(t)f(t). ‘—,
(8). First, consider |~ —
2 8 But h(o) = 0. Therefore, Q& 38,
; p'ﬁm_<]' i.e., B<2mw°. (10) gyt
ia %y 0 . . t . . 3 “
kS, H() = £(8) - [ h(t-thalo)f(x) ¢e, XA
: Hence, o LA
‘ 2 72 (Pc-P) (18) A
S P wik and ) p
T o me [ <If, | [n(t)] + sl
bt But then, 22 t . . &:'
b3 22 j h(t-t)| |alt)] | (1) |dx. (19) A
$‘ P<Pp- %m_n? P*. ol I [ I -?“-’:""
4 . A.y’1 8,
The conclusion is that for P < P* there is 951"9 (1),
A stability. Thus, h(t) = [-prosinbmot + cmocosmot]e'wot
! 2,2
gL (20)
s pr=p - L (11)
: E 4mm is obtained. Hence,
‘ is the stability limit in the case of small, ; -pw_t
deterministic damping. Ihl < Cloug*Duy)e ™o
Stochastic Viscous Damping or .
b -puw,t
" Assume the mean value B of the damping [hl < ke™™0", (21)
& coefficient in (4) being superposed by an where
¢ ergodic random fluctuation b(t) of the damping
:A coefficient. Then, (4) becomes K = Cu_(p*D) (22)
‘ . . 2 0 )
W f+ [—% + 95.—"—)] f+ "—-2- (PE-P)f =0. (12) By virtue of (17), (22) becomes
. bt 2,1/2
§ Introducing K= E—(—e'}n_“ o2 (23)
8 : .
M. b{t)/m = a(t), (13) Combining (19) and (21) yields
e and using (5) and (6), the previous equation . t
. can be changed into [£(t)|<]f,|Ke™ 0" +
L Ny v . .
*x £+ 200 f + olf = -a(t)f. (14) t .
& 0" " Y + J Ke"*oteP0T|q(1) | |f() |dx  (24)
[
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and
£(t) €™t < |f |k +
t .
N ] Kla(t}ePoT | f(<)|dr. (25)
0
Setting
1#(t) [e™ot = v(t),
|41k = g, (26)
and

Kla(t)| = H(1),
(25) can be transformed into
t
vit) cg+ I H(t)v(t)dT. (27)
[

With (27), a relationship has been obtained to
which Gronwall's lemma [4] can be applied. In
doing so,

v(t) < g.exp{ [: H(t)dt} (28)

results. Using (26), (28) can be rewritten to
yield

. t
|f(t)|e°‘“ot < |f°|l( expil(lola(t)ldt;
or

. - t
1#(8)) < 18,1 expél( 1 Iola(t)}dr

- pwo}t. (29)

However, since the random process is assumed to
be ergodic, with probability one,

t
J"Io la(t)|dt = E{|a|}, (30)

where E{|a|} is the expected value of Ial-.
Therefore, (29) can be brought into the form

[F(t)] < If,IK exp (K ECfa]} - pujlt. (31)

Now, consider

te t.
1o = tlo) + | Farate| far
[+] 0
which yields
t -
1#(8)] < I, +[ £]dt. (32)
[}
With
K] = Wo - KE, (33)

S -kt
Il & [fglKe

follows from (31). Hence,

t K kel
I I#1de < -If,) £ e l] .
1] o

K K =Kt
= |f,l [ Ifol % © Lh¥ (35)

Using (35) in (32) leads to

HMIE(E) | < || * 1ol &= -
te ]

KKt
- lim |f | e 1. (36)
00 l ol K]
For K; > 0,

ln|fy| ket =0,

1

to
and

lm|f(t)] < |f,](1 + %]-) = Kk, = const.

Since (37) indicates almost certain asymptotic
stability, the conclusion is that for

Puw
Ky > 0, de, E<—2 (38)
there is almost certain asymptotic stability of 55\
the rod. According to (23{? the stability con- ISR
dition (38) reads ?.f?:-«.i:
E{[a]} pog(1-0%) 2 (39) §
all <
L =

Discussion of the Stability Condition

Condition (39) imposes a requirement on the
10ad P of the road. This requirement shall now
be specified _under the assumption that g is so

small that g2 is negligible, i.e.,
82 =0 (40)
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shall hold true. In that case, using (5), (39) - A :'
yields {-('.E xf’

o 1808,
M (®)
% *+ wg n

*]

an inequality which can be brought into the form

2 / "‘-‘"
‘ ‘;’"‘,"‘
A s

Wy > Bfgﬁ (42) ‘:
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For (42) to be meaningful, E < &/2m must hold.
But this is certainly the case by virtue of
(41). Hence, (42) can be used to yield

2
wﬁ > (B_E:i_l—)! ’ (43)
By means of (6), (43) can be transformed into
W (P-P) 2,2
E 1)
el ” (8-2Em)

and furthermore into

2 Zn 2
- E{la L) = pie, oM
P <P %J—ul-ez-—(a.zm) (44)

With (44), the wanted condition for P has been
found.

If p+* > p*, the randomness of damping has
no effect on the stability of the rod. Accord-
ing to (11) and (44), this is the case if

2,2 .2 2,2

£2p2me g
22 (8-2Em)° s t{ (45)

But (45) 1s equivalent to

Etlal} < §5 - (46)
Conclusion
Let the damping of Euler's rod be an

ergodic random process consisting of a random
fluctuation a(t) about a mean value 8. If g is

e cBe ag L 4 Bachie LSRG J

~ 9

LR ‘\l"

AR

\\

small enough so that (8) holds true, then, for
a sufficiently small expected value of |af
which satisfies condition (39), almost certain
asymptotic stability of the rod prevails.
Moreover, if 8 is so small that (40) holds true,
and 1f the expected value of |a]| satisfies
(46), i.e., if this expected value is only a
fraction of the small mean value g, then the
stabi1ity limit P** given by (44) {is above the
stabi1ity 1imit P* given by {(11) and valid for
deterministic damping. That means in the case
of (40) and (46), the randommess of the damp-
ing coefficient does not impaire stability.
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f' The effects of joint discontinuity on wave propagation in a N

2 cylindrical shell are investigated in this paper. The joint
2 discontinuity consists of an elastic interlayer at the joint
and structural discontinuity of the joint. The transmitted
and reflected efficiencies are found for several cases of
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INTRODUCTION

Long hull structures of cylindri-
cal shape are often made from several
cylindrical segments. The joints
connecting the various segments.are
often lined with softer material and
are designed to prevent leakage and
rattling. Noise generated by a motor
or any other vibratory source on the
gshell is transmitted via the shell
structure and interferes with the
function of instruments attached to
the shell. The joint structure intro-
duces a discontinuity. In addition to
the joint discontinuity, the edges of
the joint are thicker than the shell
thickness thus forming stiffening
belts and introducing additional dis-
continuity. The analysis considers a
free traveling wave that encounters
joint discontinuity. The joint discon-
tinuity will reflect and transmit
waves of various types. In addition
to the traveling waves along the shell,
there occur exponentially decaying
near-field waves that do not transport
energy. The particular aim of the
study is to find the frequency ranges
where energy is transmitted or attenu-
ated and to discover how the joint
affects wave propagation. The analy-

sis investigates the transmitted and
reflected power due to incident waves
impinging upon the discontinuity
caused by the presence of the joint.
The power lost due to the damping
properties of the joint is also found.
The transmitted and reflected effi-
ciencies are determined for various
cases of interest. The transmission
efficiency and the reflection effi-
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ciency are defined as the ratio of

power transmitted and power reflected e
to incident power. The elastic inter- =R
layer in the joint is considered to P ]
have complex spring-type properties. ‘Q§$§
The stiffening belts are analyzed as 5% ¢
shell segments. Transmission loss in .

beams and plates due to structural gnd
material discontinuities was studies
by several authors [1-3]). Wave propa-
%ation in a cylindrical shell with
inite numbers of stiffeners was
studied in Ref. [4]. The analysis in
Ref. [4] used classical beam theory
for the finite number of stiffeners in
an infinitely long cylindrical shell.
The analysis of a cylindrical shell
with joint discontinuity was not
studied previously.
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CYLINDRICAL SHELL ANALYSIS "§ f

Consider a thin elastic cylindri- ‘aﬁgﬁﬁ
cal shell of thickness h and mean ! \a
radius a. The mid-surface of the LOAEk
shell is described in terms of a x, © AR

coordinate system. The x coordinate
is taken in the axial direction of the
shell and the © coordinate is taken

in the circumferential direction. The
components of the displacements of the
mid-surface of the shell are desig-
nated by u, v, and w (Fig. la). The
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Fig. la - Cylindrical shell coordinates
and displacements
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equations of shell motion governing u,
v, and w are the Sanders-Koiter shell
equations in Ref. [5]. The equations
are written as follows:

where
1~v b 14 3
+ .(.Tl A+ v+ [_2_- 3 (1.\,)5] eo

2
- {1=v) - o d (Qevd) g =
) "":ee Ve -0p§ (A-v) i =0

{3

143

14v 3 1-v 9
[-z—'i a-v b] R

-9 -
+ (1+b) Voo +b 2 'iEO +b Yeoo ~ Yo

2
-0 2 (1-v3) ¥ = 0

-vuc-bil—z-y).u +b£_3;—\.)-

o0€ v“e +0 veee

- ve+ b ('EEEC + Y600 + 2 'tCOO) +w

2
a

+o8 v w0

E=% (=3 () g 235 ()
2

(] h

5—()|b""—i

3 122

E is Young's modulus, Poisson's ratio
is denoted by v, and p is the mass
density.

The displacements w, u, and v may
be expanded by the Fourier series in

w(£,0,t) = §J w_ cos(no)
neo °

u(€,0,t) = § u_ cos(no)
=0 °

v(g,0,t) = § v sin(n0)
s

the circumferential, o, coordinate
direction. The solution is then sought
in the following form:

Hn(E.t) = Cn Exp(iwt + pnt)
1 ]
un(E.t) =C Exp(iwt + pnﬁ)

V_(6.t) = C. Exp(iut + p ) ©)

where « is the circular frequency and
Cn, cn. and cn are constants. Substi-

tuting Eqs. (2) and (3) in Eq. (1), one
obtains three homogeneous algebreic

eauations on the constants Cn. C_, and
Cn. the determinant of which when set

to zero yields a fourth order equation
on p,. Eight roots, are obtained, thus

() = () +1ily) , k=1, ...(8) 4)
n n a

g:elding eight independent solutionms.
pending on the nature of the roots,
the solution describes propagating or
near-£field wave nolu;iona. "Uaing Eq.

(1), the constants cn and cn can be

written in terms of the constant C_.
Since the analysis is done for evely n
component separately, it is convenient
to drop the subscript n from subsequent
expression and discussion, with the
understanding that the analysis is for
a particular n mode. The eight inde-
pendent solutions can be separated into
two groups of four, where each group

is associated with a semi-infinite
shell excited at the edge. The first
group contains solutions where

Gk -0, Y > 0 and solutions where

8, > 0. The solutions describe back-
whrd propagating waves and near-field
waves associated with a semi-infinite
shell, - @« < § < 0 (left side), excited
at the edge £ = 0. The second group

contains solutions where 6k =0, Yy < 0
and solutions where sk < 0. The solu-

tions describe forward propagating
waves and near-field waves associated
with a semi-infinite shell, 0 < £ < =,
(right side), excited at the edge

E=0.

Solution to the Problem of Wave
ropagation in a ndrica

JoInt Dlscontinulty

The solution to the problem of a
traveling wave encountering joint dis-
continuity consists of solving the
eylindrical shell differential equation
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and matching the boundary condition at
the joint. The analysis considers two
semi-infinite cylindrical shells con-
nected by an elastic inter-layer and an
incident wave traveling from the left
in the positive axial direction. The
first case that is considered here is
a8 joint without the stiffening belts,
i.e., the effect of introducing the
elastic interlayer. The schematic
diagram is shown in Fig. 1b, Since the

Fig. 1b - Cylindrical shell
with material discontinuity

dimensions of the elastic interlayer
are small, its response can be simpli-
fied and considered to be the response
of a mass-less continuous spring at
frequencies that are not too high.

The stiffness of the spring per unit
circumferential length depends on the
elastic properties of the layer and its
axial and normal dimemionl. The
stiffness of the s ni in a specific
direction can be czmp fied and evalu-
ated as follows:

n) T“
= E*(14+1 —
S [y

where E* is Young's modulus or the
shear modulus of the elastic inter-
layer, n is the loss factoxr, T and L
are the appropriate dimensions of the
layer and considered to be thickness
and length. The index k = 1,3 refers
to thé axial, tangential and normal
direction. The expression for the
moment stiffness can be written as
follows:

o
4
4 7 BHAHN) B

Consider a wave traveling in the goni-
tive direction and encountering t
elastic layer discontinuity. e
boundary condition requires continuity
between the elastic layer and the two
semi-infinite shells and equilibrium
of the forces. The boundary condition
can be written as:

Ql' + Q:l. - Ql .0
e -ao
svaluated at the joint, where

v + (2-v) w
12(1-v%) a [EEE (- -]

+ (3-v) v gl-vl
2 ({3 Yo

[oevv -]

N -—nT—
r a-v9a

m
N=30h) =

+ 3 vee]

3
v, +v( +v) .
12(1-v3) o2 [:c Voo e]

The superscripts L and R indicate that
the displacements or the stress-resul-
tants are associated with the semi-

infinite shell on the left, or on the

9 3
[(1+zb) v€+(1~zb) Vo

right, side of the joint, respectively.

The superscript i indicates that the
displacements or the stress-resultants
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are assoclated with the incident wave.
., Eq. (5) represents the boundary condi-
y tion without cross-coupling between the
' kinematical and dynamical variables in
the axial, tangential, normal direction
and the rotation. The boundary condi-
tion for joint design with coupling
between the edge variables may be des-
cribed by the equations evaluated at

;
¢
!
¥ l)l'-o-l)"-bn--Xl?R
5
&

Ao fao

, the joint, and where D is 4x]1 matrix
y representing the displacements, and F
is a 4x]1 matrix representing the

6)

\ stress-resultants and where X is a
D-[vuvvg]r
; p.Q_zﬂn_x]T
E E Ea] °® N
v 4x4 matrix representing the joint
properties. The nondiagonal terms
represent the cross-coupling between

Eq. (6) reduces to
ig the diagonal terms are equal

the edfe variables.
Eq. (5

to Akk - and all non-diagonal terms

are equal To zero. Rigid connection

N can be specified by setting all ele-

3 ments of the matrix A equal to zero.

{ Soft connection can be specified by

high value 21ij. Properly chosen

values of A1) can describe joint

: design where the two shells are rigidly

‘ connected with respect to some kine-
matic variables at the joint and free

3 with respect to others. Hinge joint

) is an example of such a case. The

b, edges of the shells are free to rotate
while the normal axial and tangential
displacements are rigidly connected.

‘ The expression for the vectors D and F

¥ asgsociated with the semi-infinite shell
- o < £ <0 on the left side of the
joint can be written in the form

DL-AC FL-GC

, 1’ 1 (8)

{ where A and G are 4x4 matrices and
where C; is a 4x1 matrix representing

the unknown constants. The expressions

for the vectors D and F associated with

K, the semi-infinite shell, 0 < £ < =,

" on the right side of the joint, can be
written as follows:

t

A a2

NG TG

R

> -

T

LAy

A% Bt

are:
P Sl L
F+rt-rao an
at the left thickness discontinuity;
b - pRearf a0
F-rfeo (12)
at the elastic interlayer discon-
tinuity; and
56
T - L 4 S 4 4 L J L 4 ]

- o) K LR A 36yt
R R e ‘
D - 'c2. ' - “cz (9) .t_"-.":‘,
;;’\;ﬁ‘
where B and H are 4x4 matrices and 0 SN
vhere C, is a 4x] matrix representing 'a%)$::
the unknown constants. Substituting A
Eqs. (8) and (9) into Eq. (6) one
obtains ”
AL,
. RS
A (AB-3) Ql=-1»® SO0
. Q10) e “;“p
\ Y
G -R c, r “.§::"‘: C
= [ @~
Solving Eq. (10) one obtains the con- e ld
stants C, and C,. Once the constant ;;}:_t
vectors C1 and C2 are known, the .:iﬁ{\
reflected and the transmitted waves '$z§3\g
can be found. The power transmitted e s

and the power reflected can also be
found from the velocities and the
stress-resultants. Figure lc (s a

T | ) | ma—

0

Fig. lc - Cylindrical shell with
stiffness and material discontinuity

schematic diagram of an infinjte
cylindrical shell interrupted by a
joint with stiffening belts. The
boundary conditions are imposed at the
three points of discontinuities. Two
of the discontinuities are change of
thickness discontinuities and one is
elastic layer discontinuity. The
stiffening belts are analyzed here as
cylindrical shell segments rather than
stiffeners because of the relatively
large width. The boundary conditions
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at the right thickness discontinuity,

where the superscripts L and R indicate
that the vector is associated with the
shell to the left or to the right of
the discontinuity. The superscript i
indicates association with the incident
wave. Egqs. (11), (12), and (13) lead
to non-homogeneous equations on 24
unknown constants. our unknown con-
stants are assoclated with each of the
semi-infinite shells and eight are
associated with each of the stiffening
belts. Once the unknown constants are
known, the transmitted and reflected
waves can be found. The transmitted
and reflected power can also be found
once the velocities and stress-
resultants are known.

Numerical Results

The numerical analysis presented
here investigates the transmitted and
reflected efficiencies due to an inci-
dent wave impinging upon the discon-
tinuity caused by the joint. The
transmission efficienty Tij and the
reflection efficiency Rij are defined
as the ratio of power tre smitted and
power reflected to the incident power.
Double subscripts are used for Tij and
Rij to indicate the incident and the
resulting type waves. The first sub-
script indicates the incident wave and

bk atealy Aty ISP A L Al G 8 S b n BB S

the second subscript indicates the
resulting wave. e traveling waves
are indicated by the order of their
appearance along the fre;uency scale,
i.e., i=]1 indicates the first traveling
wave etc, frequency parameter is

T = aw ﬁ (1-v®). Thickness of shell

to radius ratio is 0.02 and Poisson's
ratio is 0.3. The incident wave con-
sidered in the examples presented in
Figs. 2-8 is the first traveling wave.
The incident wave considered in the
example presented in Fig. 9 is the
second traveling wave. The first
traveling waven%6 =0, vy ¥ 0) starts
at T = 0.0155 and can be classified

as a bending wave; however, at low
frequency, the wave .is essentially a
membrane wave. The second traveling
wave starts at v = 1.185 and can be
classified as a torsional wave at
intermediate and high frequencies. At
low frequencies the wave is a longi-
tudinal wave. Figures 2, 3, and &4 pre-
sent results that show how the magni-
tude of A affects the transmitted and
reflected efficiencies. 1In each case
the same value was taken for the diago-
nal elements All - *22 - A33 - Aaa =-q,

The non-diagonal elements of the matrix
A were taken to be zero. Figures 2

and 3 present two extreme cases. The
value of a = 10 was used for the
diagonal element in the example pre-
sented in Fig. 2. The low value of a
represents an almost rigid connection.
The consequence of the low value of a

is that the transmission efficiency 111

8
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Fig. 2 - Transmitted and reflected efficiencies versus frequency parameter for a
bending wave impinging on a point with Yy B x33 = 10

and no stiffening belts.
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The circumferential mode i{s n = 2
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dominates the results presented in Fig. A do not have the same value. 1In f;_
2. The value ¢ = 10  was used in the particular ),, is very large due to :
’ example presented in Fig. 3. The high the fact that the layer is thin and the pAgehy
; value of o represents very soft bending stiffness is very small. k%
h connection (a = = represents free edge). Figures 5, 6, and 7 present the trans- k, :
The consequence of the high value of a mitted and reflected efficiencies for ot es
1s that the reflection efficiency R;, the following circumferential modes, m
» dominates the results presented in Fig. ne0,andn =2, respectively. The T
: 3. The transmitted and reflected value of the non-zero elements of the &¥¢fk‘;
: efficiencien for an intermediate value matrix A ';' taken to be 211 YY) t‘:g:%'
1 of o = 10> are presented in Fig. 4. = 133 = 107, and 3, = 10°. The high t}?~}”1
i In general, the elements of the matrix value of LYYA indicates an almost hinge KX Ak
3 g 1 ::,
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Fig. 3 - Transmicted and reflected efficiencies versus frequency parameter for a
bending wave impinging on a joint with 1y; = 1,, = Agq = dpp = 106

and no stiffening belts. The circumferential mode is n = 2 "‘aﬂﬁgé
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Fig. 4 - Transmitted and reflected efficiencies versus frequency parametsr for a
bending wave impinging on a joint with A = 232 % Aq3 =, =10

and no stiffening belts. The circumferential mode is8 n = 2
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<. connection where the edges can rotate circumferential mode is n = 2. The h)ﬁ}\
A relative to each other. Figure 8 pre- second traveling wave is the incident f,}¢$
h sents the transmitted and reflected wave in the example presented in Fig. ;_{-1
.7 efficiencies due to a joint with 9. The cutoff frequency of the second Nt g
,j stiffening belts. The ratio between traveling wave is at vt = 1.185. The \dg <4
. the thickness of the stiffening belts wave can be classified a torsional wave N
and the thickness of the shell is.2. at intermediate and high frequencies. -
' The ratic between the length of the At low frequencies the second wave is
:ﬁ» stiffening belts and the radius of the a longitudinal wave. The neighborhood
vy shell is 0.5. The non-zero elements of of the cutoff frequency of the second
4% the matrix A are as follows, traveling wave is marked with sharp
[} A = Aen ® Aan = 102 2., =10% Th response. The transition from the
f 11 22 33 * P44 : e solution with one traveling wave to a
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Fig. 5 - Transmitted and reflected efficiencies versus frequency, parameter for a
bending wave impinging on a joint with A1 =292 =233 = 102, oy, = 10

?ﬁ and no stiffening belts. The circumferential mode is n = 0
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solution with two traveling waves frequency is primarily axial. The
involves a process in which a near- elements of tge impedence matrix asso-
field, exponentially decaying type ciated with the axial direction become
solution is transformed into a very small at the cutoff frequency.
traveling type wave. As the frequency The impedence mismatch varies rapidly
approaches the cutoff frequency, the due to the rapid changes in the
near-field solution gets larger response of the shell relative to the!
approaching no decay at infinity, responge of the layer. In addition to
Beyond the cutoff frequency, and the sharp response around the cutoff
starting with an infinity wave length, frequency, the impinging wave causes
the wave is sinusoidal along the axis reflection and transmission of the

of the shell. For n = 2, the motion of second traveling wave. The presence of
the second traveling wave at the cutoff the near-field solutions brought about

P’

- i -n‘

L0o

S

080

YT

0.60

LAy
020 040

22" A
000

TRANSMITTED AND REFLECTED EFFICIENCES

T v g y

05 10 1.8 20
FAEQUENCY PARAMETER

ol

Fig. 7 - Transmitted and reflected efficiencies versus frequency_ _parameter gor a

bending wave impinging on a joint with M1 = 292 = X33 = 10°, At ™ 10

and no stiffening belts. The circumferential mode is n = 2
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Fig. 8 - Transmitted and reflected efficiencies versus frequencyzparametet or a
bending wave impinging on a joint with M1 =2 " 133 = 104, ‘agy = 10

with stiffening belts. The circumferential mode is n = 2
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_discussed in Ref.

by the discontinuity affects the trans-
mission or attenuation of the wave.

The near-field solutions can create a
region around the discontinuity that

in effect blocks or bridges the transfer
of energy. In order to find the points
of maximum transmission, or attenua-
tion, one has to perform a frequency
sweep for the shell considered, Figs.
2-9. Explicit expressions for these
points can be written for simpler cases
like a beam, etc. The resonances and
the overall response of the stiffening
rings introduce an additional effect

on the transmitted and reflected
efficiencies as can be seen in Fig. 8.
The effects of stiffeners on sound
transmission in a czlindrical shell is
(4].

CONCLUSIONS

The analysis of wave gropagation
in a cylindrical shell with joint dis-
continuity was derived. Numerical
examples were presented for several
cages of interest. A parametric study

of the elastic layer effect on the
transmitted and reflected efficiencies

was presented. The effects of the
stiffening belts on the transmitted and
reflected efficiencies were also shown.
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RESPORSE T0 MOVING LOADS OVER A CRYSTALLINL HALF-SPACE

Y
L)
W : Sanndar Ve
' 014 Engineering Office (Qrs.)
. Santiniketan, Birthwm
i West Bengel, India
* .
A The sathetionl amalysis to study the stemdy-

state response to & line loed moving with
constant speed over & crystalline half-gpace is
considared here. The half-space is supposed te

be composed of monoclinic, orthorhombic and

oublc orystals. The solutions for the cases of
supersonis, subsonic and trensonic ere investigsted.

The problem has isportance in erystal physics
‘ and aleo finds an spplioation to study the motion of
| the groumnd oomposed of orystalline rocks under pre-
ssure waves genereted by suclesr explosions.

,',’ £ -
Py

LRI NN

&y
3

Xy INTRODUOTION Pakeris and Lifson (1957), Cheo (1960),
{ion}.

Eringen and Samudls (1950). The stresses

The wave propagation {n orystalline
aedis plays en intaresting role in sels-
mology &8 wall as in orystsl physics.
The surface Wves im orystalline medin

bave bean studied enong others Stonal ey

(1985), Deresiavics and Mindlin {1767)
and more recently by De (1975, 1976).

The probles of genayetion of vaves
ins o.g.i.nﬂuh alastic nedim has
been gtudied smong others by Lamb(1904),

Wr.?.'m' hindiiece  ZotRIN S J N ]

produced by moving loads in & emmi.
iafinite nedivm have bean further consi.
dared by Cole & Huth (1958) and more
recently by De (1975). Sneddon (1981)
solved the two-disensional dynsmio problem
of & seni-infinite clastic solid vin @
1oad noves uniforuly over the boumdary.
Tung (1965) considered & problem to

) Plana waves od & plana surfece of & deternine the stendy state response to
oublic orystal are considered for the woving loads ovar an isotroplc alastis
W) otse in which the vave froat and the solid. In the present peper, we want to
» surface of the are parellal to investigate the methesatical solution of
3 o principal axie of alastie such & probles where 8 1ine loed moves Mith
P ofs Stonaley znu)_?. When the & constant speed ¥V over a orystalline helf-
sagittal plane (the plene parpandicular spece. The half-gpace is mpposed to be
-, to both the wave front and the surface composad of monoclinic, orthorhombic or
g of the crystal) is not & plene of elap. oublc ¢ ¢ b aosme that a plene
Y tic syssetry, waves of plene strein are strein state preveils and thet the load
I not possible. Inportent exsuples sre has bean epplied end moving for an infini.
o those of the rotated-I-cut quarts taly long time so thet & steady state pre.
plates, in vhich the stress-strein vails in the neighbtourhood of the loading
I relstion axhibits sonoclinic symetry Qs saen Ly &n obeerver noving with the
h Jl vhen referred to the rotated exes. loads Our ain i¢ here to find cut &

sathamatiosl solution of this steady-state
response vithout considering the propage.
tion of the initial disturbtance. The
quations for the steady.state walocities

o, Oy S, A . " -
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and gtresses in any anisotropic ales-
ti0 half-space czused by & moving line
load gan now be darived.

FERDAONTAL BQUATIONS AXD THK BOWIDARY
CONIITIONS

W use a r oartesian co-
ordimate systam in hich the ocomponents
of the displecemants sre danoted by «;
For the strein componants, we have

s“- = -i- (u"-.s “‘I"i‘) ) (v
vhere the comss stands for the partial
differentiation vith respect to the
coordinates.

Prom Hooke's lavw, the stress.strein
ralations are written 8e

1;.’ = °€"ut skt ) (2)
vhere 1,3,k,1 = 1,28 3 ¢4juf xtyj
°4‘."n¢ are termed the alastic stiffmesses.

The stress-strein reletions iwm contrected
notation are given by

Ty CerSp (F = L,2,5,4,5 or 6). (3)

The equations of motion in the absence
of body foroes are given by

3
1132“ - f %——“:: ] ("
3%‘

wvhere € 'is the density of the material.

The full tensor suffixes of the stresses
and streins are contrected and written as

Tye Ty Tage Tor Tsge Ts, Toge Ty
Tys* 50 Tyo= Tgs Sy1° 510 Spp- Sp,
Sss= S5 ase Sg Bys” %,

28,,= S- (s

For a monoclinic o 1 (a1l claspes)
vith 2(x,) or a(x)) [ x, = 2 fold./,

the stiffnesses are 011 S190 O3ms Oyg0
S22 So%» %2¢ C33 O340 Sep %50
©s8> %6

Por the other two oriantatione of the
2-£01d exie of the monoclinic system,
we have

2(x,) or m(xy) 3 €;5, S0 G450 O35y %o»
O23s Cogs C3m O350 O4er Cg8r Csy0 g6

N
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and 2(xy) or m(xg) 1 0,4, 610y Sgxs 460 Cops
%23 g8 %33 %38 C4p 45 %550 s

For en orthorhombic crystel (all clesses
mn, 222, m ma), the stiffnesses are LITN)
G120 ©38» Oo2s C2%s O33» S4gr %550 Ceg°
For s cublc erystal (classes 23, S, 4 %,
43, n 3n), ve bhave three stiffnesses, 049s
S49» C4q @nd for an isotropic meterisl,
these reduce to two.

Ws consider a crystalline medium which
ocoupies the balf-space xp3, 0 (fig.1). le

asmme that the load th
11-014.0 dimtgon at 2’3:- ¢ '»25’“"

An observer moving with the load at this 1?6

would see the load as stetionary. Thus,
@ Galilean transformation

x::x,+vt.x.;_=xz,t'=t‘ (6)
is introduced, the boundary conditions
wuld ba indspeandant of ¢ .

The boundary conditions in the moving
coordinatas for & concentrated load are

ng "P‘(‘; r‘ - T‘ =0 on x;: 0, (3]

vhere §(>;) 18 the Direc-delts function,
vhich 1s Sero everywhere except at x/ - 0
where it tands to infinity in such a way
that

) , ,
_( 6("0)""! =1 ()
-00

For a plane wave treavelling slong the da.

gonal exis in the neighbourhood of the
surface Xp s0ofa monoclinic orystal, we

choose (ref. f) ., ,
f“ U &7 e—,r"d ,(121.2,3)
oo 1

N
“'} T o2n
. (9
UJ and‘)l' ars constants.
FORMULATION OF THE PROBLEM

Using equation (4) witk equations
1=3, 5, 9 and considering the monoclinie
symetry for the tw-fold axis, we obtain
the following three squations )

(AL 9,+¥) Y - kU, - ikpu, =0

“kBu, +(1- %2 - V) Y +( 0" ’u.’t)”s
(4]

&;P y, +( 456 - ’u' Pl) U, *(‘55- ,'MP}")%

=0,

(10)
vh

are 2
V2 IV/e s desT Crsfeg s he
ke 149,
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Kisinating Uy, Up end U, ve get the
condition for s steady-state, non-sero
solution.

R s
Y

Y. 1- ’33"% ’5{’2&" =0 - (11)

. *  _op
This can be written .

o pt-bptrefiraizo,

%

a2 99y by %
4 = 2hk 7Y% "\a‘ ' z’s‘ ’39 -
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+‘Hss‘7';7ss +9%, -3,.%‘- 9+ 92,
b This is s bicubic equation and we write

by P P ('b),

j - 1) 5’ (12)
2 and f 1s related to Vand P .

On examining the roots of ( /| ), we find
1 that three cases arise according as

(v <«/"79,«/§¢,@mm ve o1l

4 subsonic case,

9 ) vy -sleu/f,'./ﬂ"f,\f—  uhich 10
supersonic case, 8nd

| (11) v <yféggrnt >«/°;yf,4°ss,§omeh ve

e shall osll trensonic oase.

‘-’ For & subsonic case, the diq:laco-

C aants are now written as 2

i w = 2!!& Z_U'a “7"t-e 7 d7

2° zn f 20133 ;'7 *—‘77 , (19)
“3— )‘°2u33 e"7"lei7 ’-47J

uhu'o

- At A

kN “23/"':

§ AL ROTC N —z)—&f_]é
§ si S U‘-;"/U'J
=[ (6-‘:- 2tY) (%, 6}_35‘)1» Axf;j/4j

: 43 = 1‘.% [k (%55 - 3%%-1_1,)
+h(8 8" -
( 2"’3 3_35:2);] ’ (1)
o (The veluas of U;; are associated with the
W roote P of qm‘zion (1.
/]
{
)
',
2
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For the mparsonic case, the displacements g
are wvritten in the forg (15), vhere | P%N
ere only replaced byc'z and for the

trensonic case are'simply replaced W
throughout by 5" . v t
2,3 514
B
lou, for the conditions at infinity, !
(1) a12 dsplacenents and stresses must A
remain finita at infinity, end (11) at -
lsrge distances from the point of epplics. @~

tion of the loed the dsturbence must
consists of outgoing waves. ‘!'luu are

oslled the finiteness and rediation condi- j—'{ 45
tions, respactively. { _\?‘ i

ke have considersd here those solutions adar X/
which satisfy the rediation condition at \ACAr
infinity. The solutione of the form r®
'ﬂ(a.'ojxi) are not considerad on the Ok b
basis of the redietion condition becsuse N
thoy represent disturbances vhich originate .

o

A BRI
AR A

infinity an eonnrgo toward the loed
Pang (1085)

Our problem 1s now to find out the

sathematical solutions of the above three

ocases for monoclinic, orthorbombic end BRL X
cubic orystale subject to the boundary ;t\ o5
SCLUTION OF TH PROBLEM N

Case 1. Sudbsonic

Using aquations (13) snd (?7), ve get
WU by Uy Uy = - B g(x))

AU +dyy U, +d23 Uij=0

D e S e SRS PR, s 74

SR AP W

. B -

J 7 et 5 oAy
'_ ﬂ"p : ) RS

(14) pu—
2N
vhere " p t.‘}:: :
P'= Fleg t;-'.:\*
A = (9. -Av N s
'} b 6 %22 GJJ %24 » o
A9y = 49, -p. T B AT
R A il K AT SN
RO S ERT ur d P oA
and the mta(nl ford of the delts function AOYAST
hes been repleced by () vhich has a AL
nesning 1ike a Heavieide step funotion. o
From equations (14), we get . :\J-,_‘
l \,’ oS )
U' :_x‘ P’(‘l) LS »
4
‘.‘l .,
X

rte
- ) o .. [} L ) L J Y . - -
OIS S ]
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:;l .:"‘ JAK -"F’E, ¥

T

YAV L

—_— (18)

4- dy, dyy 423
’du P‘31 &"33
and & are the roots of the equation
given by (11).
5 e

Therefore, nhn
"’l("u“z) =
m'*a? + % cﬁ.n?)(-

Now, the first part of the htqnl is

- g Pl Lot Tk

(13)

) - 4
= -P("i"it“' ——7—6"?)
Lof.tnedton (981).7. (M)
Henoe, we have

wx, )= =Pz, (§-3)
tiag (f- 2y eizg (4- W],

w ()
oo
J -J—r ’ b 423, "

Uy (%, x3) = P[_-w-s, (5-4%)+
i, (3-R)+inr (§-2)],

“3 (v, lz) = ‘P[ts,ﬁq (* .-L)+wl‘1,‘
(k-%) +i 8325 (5 -4 .

Qo

oLt S B e B o A w2 E LR L R N LRYA

The non-sero stresses are given by
Bz - B Lin (8, sat-epuvfmy,
- °2" S,P‘ "3.,)+ “l”z (c'; ““‘q, -
C22% 4 @O — Cay 52, w30, )+ix,
(¢ Sty - €A w10y — ey, s,p:’q,a_‘ﬂ
%=- 'E["" (1 Sin®y = 2478 w0, -
“ s.h ”")+ 1.”’_ ('e"' s‘n’; - e"'r‘&
“’91 - eb’ S;" fd‘;)* L”’ (c‘h “n‘a X
S (20
By w30y - oy, 3p @bs)]
Y A .
'E- —,;[w,(_e“f;s..o.-c“gme.-&
C5e S S8 ) +ing (S Sn 6y ~ ety
+Cg Sy 5‘»”.)-0-1‘.13 (5% S & —cgeB sty +egy
1s noted that 4f 4 = 0, the velocity
of Rayleigh surfuce waves in the monoclinie
orystal can be obteined. To determine this
surface vave valocity, threes dffarent pol!-
tive values 07 q wvhich mtisfy the 1\:
and the root which mekes all of the % A3 £%
real and poritive are detemined. ' 3
This root only will give the wvelooity of
Rayleigh waves (ref.f). If the load moves

ab emotly the speed of Rayleigh surfuce
waves, the refponses will be infinitely

large.
Case 2. Supersonic
s proosed axaotly in & siniler gy as

given by case 1 and replace §=q.
throughout. fhmfbn, ve get ¢

u"("j)l’,)— 3" g;(xﬂ t’ﬁl +
2, hxdy +2 e h "1’()( Pl(x.))
0.‘7'" ‘-7 )

vhereX,; are the smme 83, , myg
maurqmudby.p.

Wow, J-f Pl(’t‘) 07(:.-;21)47

.n
= L()o('() e -Rx1) dy (o5
were £(7) 1o the Fourter transtors of

- gu{ P(xy ax] (20)

(22)
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and p(x;)=p(x,+ Vt) 10 tha pressure Case 3. Transonic case

distritution ovar the surfece 7:" = 0o Replacing &3 by ,&’ , the dieplacements
and the strasses in @ monoclinic erystal

Or, the intagrel part is oan ba found out froe the above analyses.

-— I*{-F‘!: ' P Thus, , .
AL (o) wOdyv) = =P lir (§-)+
| T L R Lt o PR TR )
| w (o, )= =P[Zo i 4({-£x ) wbim)=-Plrin ($-%)+
+ % 41 (x-Bd) + 2t (x/-E )] 1200 %L (x/-Ag)+ By

wr(xfyxa)= —P[% il (5B + - ACi-A=DY

T (e = =P Lin (-8 +
Zoa it L (u-Rx) + 2g3 150 1(":‘&"'& {%issi(x.’-F,xé)Jx.ais"u(x.'-éx.'.ﬂ

(27)

w (xyxa) = =Py, 4 4 (x/-B3)  (ogy ORTHOFHOMBIC STMMETRY
. Y .
* A il (R 3, 8 el SRty of, mlution fa the, former
1(>~ g x;)_] . coupling constents o4, Coq 8nd Oy, 88 8
The stre result of which the dlsplacements u, and u,,
© siresses are - in the sagittal plane, are coupbed vith th
TI: -P L-r" ¢ 8 (z,’—ﬁz;) (e,z— dlqn:e-mt ug zom:i to"u. For an orth:r-
N '} . /_B ! mbdi:lgo cﬁ'.gfbs:‘t’ugmﬁzzn '(::D)
¢ - - .
22 %f c“_s‘e )t $:14- $ (= P";") then heve the two solutions -
(o= aa %~ 2y 2 ) #2550 Yo, Yfo, Uyzo
3(":‘%";)(‘lz“cu’(‘gg—c“sag)] wd Yzo, Up=0, 0 + (3
. = s ‘Considering the first only, which
T = = P2y i 60x/~Fxf)(en~ 2t 1 & ave ot plene :t:un:.:': ;...!'
! = Sy SF )+ 2, 8(x/-B %) (e~ FEam-mpro-cfo, ()
A ' 1 !
H 2 a . 'y t1 e I
€24 1 ’g = cl,l, 52& ) + KXozt 5(":'6*;.) ;5‘1 eh(;'-.l?;)d;: t:o.:.:ul:;t: 6. gotf
- N B\l d
Con-c2e 5h - e %8)] Breh = =[d- et an (v- ’")]/au
- - . ,_ s ’ (*, ’- 4
. K Pp—[x“ ek 8= (3-00- ) e s
—e Bregn +eg8) Xyt . = Upg o (%)
( 616 1 'u ) 56 l) 02 13 u?.}.__ = —1.(6 - 3”4-1')/&6.
; 5(’9"Pz"z)(_“uﬁ.*cu"‘z*‘scsz) X}
$ Lot §(x =P xlY (=, P suhaonic case
,_5:'23)](. =B (B reun + " take the displecments in the form,
7 L3 -
’ Unlike the isotropic case, here it is W) xdy=+ rt“oj e THehT™ad
i observed that the ces ape marked T leo (81
' by‘tbr’- ves x/-Bxjz0, x/-Ax}=0 and * ,
' and X -fxrz0 . .
! h™ (en) e ! ,:_ng_u'-r-,r‘-
' The nedium is undisturbed in front of z(*“*‘) z: ~00 i d
‘ these waves. -9 x5
: <57 1 dy (j=t2)-
68
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Considering the boundary conditions (where
the squation for T¢ ie ildentically sero),

we have PIC
U= — %) (w+if,)
@i ¢4 e (s2)
W Pl (i),
T
4 = e [n+if)(9+49,78)
_(-‘q ""‘"o) (3'1 +i”gzrg&)] .
Proceeding 1ike bafore, ve get
w (o, xh)= L [-(h+ih) (- %.)

+(neid) (- 8)1,

4= -l Bx - -( f"z’
b2t BR2 s G S ()

’ 2, .
“a0ia) = B LR eh)(E2)
+v (~r,+£g) (%- %&)J .
1¢ 4« 0, ve get_the wpeed of fayleigh
surface wves. In that oase, we have
Cath)(Cn=caniB)=(4 *ﬂ)(‘n‘%ﬂi&
) (sq)
vhere el are obtained from (%). After
sisplification, & fourth degree equation

for V ie obtained, one root of ubioch (Ve °ll)

vill give sero displacement. Ramoving this
root, we get

(1-0)8%=(1-b +2§)8* + § (F+2)3-F 20,
(34m)

vhere
2 -
9= fV/G“ ) &= c“/'-'-u. ) = ¢, 2
%
[
P - T .

§ Tty
In this case, three diffarant positive
roots (XP= Pvi/es ) vhich eatiafy the
sbove equation is first dotnq“inag and the
root uhich makes all of the £ g resl
and poritive will give the velocity of
surfece vave. If the load moves steadily

st this speed, the responses will be
infinitely large.

Supersonic ouse
Replacing e = ip md& = i&,
ve got

TG TG g gy -~ -

; ‘1\‘ s,; R R B e
v

. -
S
,L\.»'\«%l b X X KR

b= = P (4 -8)

6741

Vaz  PL() (-P)

174 (55

4,: - - ] ;
2 % [(1 fn’f-’" Yanf )= (%-8)

(’n - ,n

Therefore, we have -
i - g, EOD)
(7P S0 g +
ALk
+ (v;—é.) S Pi'sl":) 1 (xi-f>2) d.r]
-0 L7 (”)
or, - "al‘E";.
w oty = & OB by
°
t(r-Fy (a-Bx ,
) 58 1.
¢4 }(z.') 1s @ concentreted force P, ve get
“(xx) = g LO-R(-Bx)
~(a-B) 1 (5 -Fx{)] (sn)
Sinilarly, ve have
"‘ZC":» ’f-'z) s é-‘
3
=% (5-B)1(=-B)] -
(=)

In this oase, the displacements are merked
by two waves

¢ B 2
K-fxyzo, x/-fxpzo0, ()

which shows that the medium ie undisturbed
here also in froat of these waves.

Transonic oase

Ws consider the case whera V <'~F_7'f
but > eigs -

Replacing pz - i.é. in (3°), ve get
U= - PL(v) (4 -8
[ ‘—'2'43 : e) )
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Uy = P':(":) (v +8) ,
AR ()
dy= fu [0a- ) (9,760, 8)-Cr +ifhy
Cda-8, % F, )

Kz =i (A9, ) /eb

5= (B ea-1)/kE

Therefore, ve have

W O, x4 = .';5 F(a-B)(§-%
! ﬁ%i)+(ﬂ+%)l("{“é"‘)],

(41)
m -—
wa (xf,%4) = ;5 [-0s-8)%
(% - -;-,'- G f;_%g‘) +(h+ib)n
1(x-§x)]

If ve novw introduce the conditions
Ogp= 011, Ggg~ O4q SpPropriate to & cublo
system in the sbove aquations, the corres-

ding results in the direction of the
:::d.o exes ocsn be obteined.

The present analysis indicates thet the
protlem of steady-state response o a line
load moving with a constant speed over any
orystslline rock including trigonal, tetre.

’ h-nrul, atc. oan be studled
?::IMG) for sertain orientation of the
axes of the orystal). The psper also serves
to f£ind out a solution of the problem vhen

such rocks exist under initisl stress
(ve, 1977).
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then, presented.

:'. We are presenting a method of calculating the modifications of a discrete,
conservative model, which enables one to reduce the distance between its
dynamic behaviour and the one identified on the physical structure. An ini-
tial approximate model is known and results from a discretization "a priori"
for example by finite element method, The comparisons of the partial eigen-
solutions of this model, together with the corresponding eigensolutions
identified on the physical structure, enable one to locate the spatial area
(or groups of degrees of freedom) where the initial model reveals dominant
errors. The exploitation of the perturbation method enables one further to
calculate the variations of the physical construction parameters, such that
the modified model becomes, on a certain frequential field, dynamically si-
milar to the physical structure. The results of a numerical similation are,

¥

:

RN INTRODUCTION

® The recent development of the modal

e identification methods of the mechanical sys-
tems enables one to envisage a more effective
exploitation of their results. Particularly, the

. degree of accuracy obtained on the eigensolu-

tions identified enables one to exploit them in
view of improving the mechanical model represen-
' ting the structure. We are limiting this study
to the case of system whose mechanical characte-

A

3 4 ristics are representable after dis-retizatiom,

‘ by real, constant, symstrical matrices., We also
P assume that the dissipsting forces in the struc-
gt ture are small in comparison with the conserva-
; tive forces, and that the eigensolution of the
"4 conservatice structure associated to the real

- structure are, therefore  identifiable with

good precision, The adjustment method presented
here only concerns the conservative model, The
propounded objective consists of determing the
modifications of inertia and stiffness that are
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to be introduced in an initial, conservative mo-
del, such that the new conservative model of si-
wilar order, thus obtained, admits for eigenso~
lutions, those which have been identified on the

structure.

The adventage of the solution of this
type of problem is confirmed by a recently-pro~
posed method [1], whose aims is to adjust the
eigenfrequencies through parametric modifica-
tions in the areas where potentiel and kinetic
energies are dominant. These areas do not neces-
sarily correspond to those areas where the ini-

tisl model reveals the greatest errors. The phy- ‘ l.‘:‘l“
s

sical interpretation of such a modified model is, \.;S?Q;

therefore, particularly delicate. ] \E:
R

N

2 - DATA OF THE PROBLEM Yo

Y

SAh,

The data of the problem are as follows: E&,ﬂj«":@

(e)

the matrices of inertia H(‘) and stiffness K
are of order (NxN), real, symmetric , constant

3
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definite positives, They correspond to the initial
model and are assumed be obtained by finite ele-
ment method.

Then we calculate the corresponding mo-
(e) and A (e)

1 1
respectively, of order (N,n) and (n,n) characte-

dal and spectral sub-matrices, Y

rizing the first n eigensolutions, These diffe-
rent matrices satisfy the orthonormality rela-
tions :

Tyl(e) u®) Yl(e)

- E, where El is the n order

unity matrix
'L‘Yl(e) ‘) Yl(«z) - Al(e) m

It is also assumed that the experiments
on the structure have permitted the identifica-

tion of the modal and spectral sub-matrices Yf‘)
and Al(m) respectively, of order (Nxn) and (nxn)

characterizing the first n eigensolutions of the
conservative structure associated to the real
mechanical structure. We admit that the preci-
sion of initial modelization is reasonable, such
that the distance between the calculated and
identified eigensolutions is sufficiently small
and enables one to carry out a mode-to-mode cor-
respondence. The method of mode-to-mode pairing
adapted to our formulation of the problem is
based on the quasi orthonormality of the modes
identified compared with the modes calculated.
This property is used to construct a matrix of
linear combination (l?.l + A“) (cf. : relation 6)
with dominant diagonal and minimum norm. We shall
not go into a detailed expose of this method. It
should, however, be pointed out that the method
propounded by R.E. HULL, B,I, BEJMUK and J. NI~
CHOLS [2] also enables one to solve the pairing
problem. Let us also point out that we consider

the case where the modal sub-matrix Y,(m)

is on~
ly partly identified. (For example, lack of in-
formation corresponding to the rotation degrees
of freedom, abbreviated by D,0.F., or the inte-

rior D.O.F. inaccessible to measures.

Based on these data, we attempt to de-
termine the additional matrices AM and AK such
that the modified model : M‘® + aM ; k(®) « x

admits as first n eigensolutions YI(‘) and Afm).
The method propounded consists of two distinct
stages : the first stage is one of localization
which consists of finding the area or groups of
degrees of freedom of the structure for which
the initial modelization reveals dominant er-
rors. The second stage consists of calculating,
in the previously-located areas, the modifica-
tions of physical parameters to be introduced
in the initial model in order to have its first
n eigensolutions coincide with the identified
eigensolutions. This calculation is based on a
sensitivity method,

3 - LOCALIZATION OF MODELIZATION ERRORS

The exploitation of the perturbation
method and of equilibrium equations enables one
to dztermine the dominant areas of the additio-
nal matrices of inertia AM and of stiffuness AK.
Their locations define more accurately the posi-
tions of the group of points of connexion and
D.0.F.'s and, consequently, the sparial areas of
the structure in which the principal modifica-
tions should be carried out. This process enables
one to reduce, in a large proportion, the number
of unknown quantities and transform an initially
highly -~ under ~ determined problem to an over-
determined one. Among the infinite number of pos-
sible solutions, the calculated solution taking
into account only the dominant areas, seems to
present an acceptable physical meaning,

3.1 - Exploitation of the perturbation method

The distance between the initial model
and the identified (or measured) models is assu-
med small, In other words, the additional ma-
trices AM and AK are assumed to perturb slightly
the initial model. The perturbation are regular
and small in the sense that :

a - the same number N of D.O.F. is retained ;

b - they produce small modifications of the ei~
(e)

genvalues )‘v ®) and eigenvectors y\(") sV=1,2,,..,0,
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In this case, the new model represen-
ted by ¢ u(") - M(‘) + AM ; K(‘)-K(‘)MK, admits
as modal and spectral sub-matrices :

Yl(m)_yl(c)M‘Il ‘Al(.)'hl(e)’Ml )
vhere : |AYl|<<|Yl(°)|;|M||<<|Al(‘)|.

Moreover, these matrices satisfy the

orthonormality relatious :

Tyl(m)n(n)yl(m)_gl’ TY|(-)K(I')YI(.)'A1(')“)

Let us novw consider the set of N eigen-
vectors of the initial model represented by ‘l(')
(NxN) and the N corresponding eigenvectors of
the structure represented by Y(") (NxN), Expres-
sing Y(") on the basis Y(e) we obtain :

Y@ 2 y(® [g44a]. (s

The separation into two sub~bases, ma~-
king the n calculated and identified eigensolu-
tions appear, leads to the following partitio-
ning @ . . R !A
Y(e)_[yfe)gyge)] ;Y(u)_[ygn)h;-)]ﬂ. nion

' ' Aridy

The method is based on the following

approximations :

a)lAnl«lnlI where A, and E, are square ma~

trices of order n,

b) Ap = AZI = 0 ; relations which express that

each modal sub~matrix Yl("') and Yz(.) can be re-
presented with sufficient approximation in terms
of only the corresponding eigenvectors of the .

initial model :

(m) (e) .
A A L AT E (6

(m) (e)
Y .Y, [zz + A )]

2 22] *

where l-:l and Ez

and N-n respectively. From the physical view

are unity matrices of order n

point, these approximations are equivalent to :

- a similarity of the number of half waves in
the correspondence between the n calculated and

mesured eigenvectors ;

- a rather clear separation between both sub-
spectrum characterized by the spectral sub-ma-
trices A'(‘)(nxn) and Az(.) (N-nxN-n). Among the
two previous relations, only (6) is exploitable ;
it leads to two methods of calculating the matrix
A" H

= In the case where the modal sub-matrix Y
order (N,n) is totally identified, we obtain the
following by exploiting the orthonormality rela-

l(")of

tions (1) :

T, () (e) , (m)
A“ - Yl M Yl -El . (8)

The matrix AL thus calculated is one
that minimizes the potential and kinetic energies
calculated by means of the components of the er~

ror vectors :

(e) (m)__ (e) and

v vhere Ayv-’v Yy
h

€y~07,7Y;

n”v-A Y (.v being the vE® column of the unity

1'v
matrix).

- In the case wvhere the modal sub-matrix !‘(")

is partly identified, the previous method is not
applicable, Ay is, therefore, expressed by the
following pseudo-inverse :

A, - [Tyf‘)yf‘)] - vae) (Yf"’-v§°) ) 9
which is an approximate solution of (6) obtained
by calculating the matrix A“ column by columm
and minimizing the square of each Jc | norm of
the error vectors €, -Ayv-Yfe)nl‘V,Vfl,z,...n.
In the relation (9) zeroes should be introduced
on the lines of v,“) and v,“‘)
unidentified D.O.F.'s.

corresponding to

Taking into account the approximations
a) aud b), the development of the orthonormality
relations (4) leads to the following relations :
T+ T @ ey, @ .o

A+ Ay

1 (10a)

Tvz“) MY, e . (10b)

gy ¢ T @ T O O
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from wvhich we obtain : their common dominant blocks. The relations (12),

(13) and (16) take the general form : X.Y, = D
a4 ¥ ec where c—u“’v§°)|A1,+TA“l (12) b

Ca AR
AP

8k 1®ac where Gen®y{®|m 1y 4 Where X designates
1 ] 1 % X \ D,
TA“Al(e))I (13) the matrix whose E ?

2t dominant blocks are |- fg-~----
L) b e BN - - - - p
;" ‘i The rectangular matrices C and G of or- to be identified, o =
N8 (]
R der Nxn are immediately calculable and, as will Y, denotes a modal Y
3 be seen later, play the role of localization sub-matrix, and i
e matrices, D, a known matrix,
l-'

: 3.2 ~ Exploitation of the modal equilibrium The localization is based on the fact
': esuations that, to each predominant block in X, there is a
Jﬁ ) corresponding group of lines of greater weight

N

We can do away with the previous hypo-
theses by direct comparison of the modal equili-

brium equations of the initial model and of the

in D .
(3

The method consists of comstructing,

model corresponding to measurements : by means of the n column vectors of each of the

X7 !, 7 - "

‘
¥ . .
*: K(e)Y (e)-u(e)Y (e)l\ (e) - o . matrices such as Dc' a weighted sum vector whose
_"4‘ 1 1 1 components are representative of the relatives
- (K(e)oAK)Y' (m)-(u(e)MH)Y,(m)Al(M)-O (15) importantes of the lines of Dc'
B ﬁ..
Y By combining both equations we obtain : Example : A perturbation of mass in zone 1 and
!y . . .
doe AKY(m)—AMY(m)A(m)-H where of stiffness in zone 2 will be revealed by the
‘ ' | 1 configurations of the following weighted sums
_‘.'i. .
—_—) |AY|A|(m)*Y§e)M|I'K(e)AYl (16) vectors ¢
o . D.O.F
L, The rectangular matrix H, of order N.n,
)
~% is directly calculable and will also play the Zone ,[ Components of the weighted
X role of location matrix. sum vector corresponding
! . Zone 2[ to €
iy The relation (16), not based upon any
e ———————————l
:" o) approximation, has all the advantages of an o
A D.O.F
g,l‘-' exact relation. On the other hand, it does not
g ~ allow separating the predominant areas of AM 2 \ Components of the weighted
Y one
&' ) from those of AK, Additionaly, (16) is very sen- [ sum vector corresponding
f sitive to measurement and identification errors. to G
.\I Zone ZE
,J) 3.3 ~ Localization of the errors of discretiza- _—
-.5 tion D.O.F ﬂ
) .
.g’ The relations (12), (13) and (16) enable Zone l[ Components of the weighted
X us to locate the dominant blocks of the matrices sum vector corresponding
L) AM and AK. The three matrices C, G and H have to H
.:-j basically the same structure with respect to er- Zone ZH
% rors and they will be exploited either separate- —_—

ly or jointly by comparing and cross-checking

3

v,
;iu.J.i .,
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The determination of the zones and vity method [3],[&]. [5], to reduce the distance

their limits (selection of the D,0.F.'s) is then between, calculated and identified eigenmsolutions.
carried out by arbitrarily setting two thres- The physical construction parameters on which we
holds on the components of each vector : are working in order to obtain this adjustment is

limited only to those parameters intervening in

= threshold 1 is an arbitrary fraction of the the previously located, dominant areas of AM and

maximum component of the sum vector considered, AK. This method enables us to construct a conser-

- the aim of threshold 2 is to eliminate doubts vative model of order N, whose first n eigensolu~

resulting from approximations, numerical, expe- tions are similar to the n identified eigensolu-

rimental and identification errors. A D.O.F. tions of the conservative structure associated to ®-

will be retained if the corresponding component the real structure, By restricting ourselves on- S 2

of the weighted sum vector is greater than the ly to the terms of the first order we calculate '_-_‘i

thresholds 1 and 2. the gensitivity matrix S(rx2 + nxq) by means of z.' E
- the mechanical characteristics M(e); K(e) and '_‘-::'4‘ “

3.4 - Practical conditions of application partial dynamics characteristics A (e) A £ (e) -"“ v

This matrix links the differences of e:.gensolu- ~

= The n column vectors ap V- 1,2,.00.,n of tions represented by the mat.nces AA and A“ :‘;:"{:

the matrix A“ condense information relative to regrouped in the vector b(n + nxi), to the vec- "__":

eigenvectors differences. The matrix A” is the- tor Ap/p(qxl) of the relative variations of the Q::_‘;

reby not very sensitive to measurement and iden- construction parameters. R

tification errors. { )

The initial selection of these parame- :‘ ":\
= The practical limits deduced from the test ters is carried out so as to satisfy the condi- '~£\;{\
cases treated are as follows : tion : q < n2 + n. We now endeavour to obtain the \.:w ::-_
X (m) )‘ (e) approximate solution of the linear system b=SAp/p .‘. >\.'.

< 0'3;,allvol< 1, where

)‘v( e) based on a criterion minimizing the squares of 5
the weighted norm of the error vector € = b - S. S
allVO - e\)Alle and V, 0 =1 2).--9nn AP/P and of the vector AP/P. ::..}
\l
- The numerical simulation showed that the loca- 4.1 - Determination of the sensitivity matrix '*-_,.“,\-_.:
lization obtained by direct exploitation of the 2 e
tq e * - . . . Lac i
equilibrium equation (matxix H) is very sensi- Let us call the it:h construction para- A T
tive to small vanaz;c)ms of the elements of the meter p,. The eigensolutions A(e) ; Y(e) corres~ :J.:.-} v
modal sub-matrix Y, . In practice, it is logi- pond to p;. Let us call the first derivative of a -fx: \
R : el
cal to think that noise produced by measurement, V quantity V ; in relation to the scalar P The K \i .
identification and numerical errors would lead ces e " . . . . pSasat
modification dpi gives rise to new eigensolutions
to an erroneocus localization, Therefore, in or-
. . co (e),,(e) 2, . (e) . (e) 2 Sl
der to determine the matrix H, it is better to AT74A i dpi+0(dpi),Y +Y i dpiﬁo(dpi) 17) ACNEN
’ ’ TR
use the approximation of Y‘(m) given by @ '.:'\'.-:‘.-:‘
. . . EAE NN
Y](m) - Yl(e) [El . A”]. The simulated test © (eintroducmg the basis change : ::::.:3“
cases shows that this procedure leads to an ac- Yi =Y ;A we obtain the following result af- e
curate localization. ter derivation of the orthonormality relations o
o NS
SN
4 - DYNAMICAL ADJUSTMENT A ¢ Tyle)y (e) .y, NN
as) RSy
We now endeavour by means of a sensiti- i M(e) A(e) A + T (e) (e) (e) !\(f) .:.\..\'S_
. VAN LY
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Knowing H “) K( ). and assuming that the ei-
genlolu:ionl of the initial model are also

known, the matrices iA and A i would be easily
14
calculable,

According to (17), the variations of

th eigenvalue A (e) and the v th
(e)

‘the v eigenvec~

tor y, will be written as follows :

= A, (°’ dp; + 0 (dp; )2 19)
d - .a, dp + O(dp) where i%

. L i“v denotes
t.he v

colum of 1A.

Comparing the latter relation to the
difference vector Ayv given by (3)

by, = 9, ® =5, - @

it to the nearest second order terms :

a,, ve deduce from

a .\‘ dP »

" (20)

vhere we note : a = T{Ta”v;TaZN};

JTT T
% = Uiaggy b 4 a0

Considering that the scalar dxv and
the vector 8,Vvs= 1,2,...,n, caracterize the
differences of eigenvalues and eigenvectors bet-
ween the initial and identified models, the hy-
pothesis A,, = 0 iatroduced in the first part
leads us to consider only the following sub-

vectors of dimension n : a“v-A“ev and %11y
connected by the relation :
v " iy 0Py ¢ (21

Considering in (19) and in (21) respec-
tively the n scalar equations corresponding to
the n identified eigenvectors, and writing them,
i.e. (19) and (21) such that only dimensionless
quantities appear, we obtain :

A

Pi <-)
_TY —(T v,iTp
N o, V =1,2,.00,n .
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These equationa are grouped under the form 3

. (e)
Ax\: v 1
(e) (e)
N ’»
: . Api
= p. o — written :
i ?;
I ] 4
- .‘ ——
ip;
812 i%112 where b and 'i are two
vectors of dimension
P T —h— - hem

n(n+l1),

More generally, for q construction pa-
rameters, we make q modifications transforming
the vector of the parameters p, of dimension g
in p + dp. We can write to the nearest second
order terms :

() 3
d)‘v 151 \’ !

(e) - ¢(® %
ic]

i 9 -

In similar manner as in the case of a
single parsmeter by using the hypothesis AZI
and considering that the scalar Al(e) and the
vector a,,, mark the differences between the ini-
tial model and the identified model, we obtain :

Va2, 00e,0

relations being grouped under the matricial form:
bes A% (22)
where b is a vector of dimension nx(n+l)

S = [ll.....ll,...,l ] a rectangular matrix of or-
der nx (n+l).q, —P- a vector of dimension q.

4.2 - Determination of the solutions

The linear system (22) is assumed to be
over-determined. In fact, the localigzation must




allow keeping only a limited number of D.O.F.'s,
and the number q of physical parameters around
these D.0.F.'s is assumed to be either inferior
to n(n+1) or chosen so that it satisfies thisa

condition,

In the strict sense, (22) admits no
exact solution ; consequently we endeavour to
reach an approximate solution that simultaneous-

ly minimizes :

~ the square of the weighted error-vector norm :
Pe = P(b-S As-) wvhere the matrix P, diagonal of
ordernx(n+1), definite positive, is arbitrarily
chosen and plays the role of ponderation matrix
fixing the relative importance accorded to each
of the elements of the eigensolutions ;

- the square of the solution vector norm A% .

We are therefore led to minimize real

scalar function j :

T
joTerfe v ot t

where o is a positive coefficient arbitrary
chosen and specifying the compromise between
the quality of adjustment and the importance of
the modifications.

The solution of tris minimum problem

leads to the solution :
-1
(51;- ) [Ts P2s + aE] Ts »% (23)

4.3 - Choice of a solutjon

The ponderation matrix P is determined
in terms of the physical nature of the specific
case dealt with, i.e of the type of structure
and of the application envisaged by means of the
dynamical model.

The problem that remains to be solved
is the determination of an acceptable value of
the arbitrary coefficient &, The examination of
(23) shows the influence of this roefficient :

- for a = 0, the square of the solution-vector
norm is not minimized, and the calculation gene-
rally leads to physically inacceptable scalar
values Api/pi H

- for large values of a (or more precisely
a>>]%/ det (18S)|), the square of the error-vec-
tor norm is no longer minimized and the solution
vector no longer satisfies the constraint equa-
tions (22).

The propounded solution consists of
calculating for a set of a values the correspon-
ding solution vectors. For every vector (é%) ,
we then calculate the vector ﬁ - S(-A-P-) . This
vector b represents the eatmauon of the quan-
tities (A)\,/)\’) and (a v ), noted (A)\)/)\)) and
(a”v) , obtained by means of the sensitivity
matrix S, when the parameter variation (Ap/p)u
is made. The comparison of these estimated va—-
riations with those desired (AX v/)\) and ‘Ilv)
enables us to determine the influence of the coef~

ficient o on minimization.

In practice, the q number of parameters
initially included in the calculation, is often
physically superabundant. For instance a wrong
modelization in a determined zone can be due to
the erroneous estimation of a single parameter,
whereas all the parameters of the zone are taken

into account during the calculation.

The numerical simulation shows that
vhen the value of o varies the scalars (Ap. Ipl_)(l
corresponding to the superabundant parameters P;
tend to change signs more frequently than the
others. The propounded method consists of elimi-
nating the parameter (or parameters) showing the
greatest number of sign changes and, by a new
sweep in a of recalculating the new scalar
(Apilpi)a corresponding to the only remaining
parameters, We then use, as sensitivity matrix,
the matrix constructed by the columns of S corres-

ponding to the remaining parameters.

The procedures is stopped when the sca-

Y, .




” vy
[l Rl

A A A

G K R i

R ™ 1ot hrutights

PP

lars (Api/pi)° do not show more than one sign
change. Among th* set of the solution vectors
(Ap/p)u of order r < q obtained during the last
sweep, we retain the solution (4p/p) a* conside-
red as the optimum one in the compromise between
adjustment quality and modification amplitude.
This choice, left to the user's appreciation,
consists of judging comparatively :

- if the values of Apilpi are acceptable,

- if the estimated variations (Aivlkv)a. and
(a

llv) » are close to the desired variations.

4.4 - Adjustwent of the initial model

The value o* having been chosen, we car-
ry out the modification (Ap/p)a,on the initial
model. This modification consists of adding, to
the initial M‘®) and k‘®?, the adjustment ma-
trices of inertia (M)« and of stiffness (Ax)a.
defined by :

(Amat - .z P "5_9 (— P; )(l

4,5 - Influence of the non-linearities

If the linear approximation introduced
in the sensitivity method is acceptable, the es-
timated variations of the eigensolutions i.e.,
those specified by means of the sensitivity ma-
trix : (S)u. =S (A%)aﬁ, must be close to the
effective variations obtained through calcula~
tion of the exact solution of the new eigenva-
lue problem defined by the matrices :

O IN ) a5 ke . (8K) .

The observed differences arise essen-
tially from the non linesr terms that link the
effective variations of the eigensolutions to the
variations of the parameters. The introduction of
the second order derivatives would notably limit
these differences, but the resulting complexity
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appears inacceptable to us, at least in the case
of large systems. A more economical.solution is
obtained by arbitrarily reducing the norm of the
modification vector (és)a* ,» i.e. by replacing

(Ap/p)at by B(é%)u* vhere B < | - in practice

B = 0.2 to 0,5 -. The additional, corresponding
matrices of inertia and stiffness are then cal-
culated and the new eigenvalue problem is sol-
ved. These solutions serve as a starting point

to a complete iteration of the localization and
adjustment methods,

5 = APPLICATIONS

The method was tested with numerical
simulation, first, on simple elements, then, on
industrial structures, We present 2 simulation
examples illustring its principle, We consider
the axisymetric vibrations of a tank composed
of cylinders, ellipsofds and frustum of cones
modelised in 16 distinct elements and 140 D.O.FE's.

Its matrices of inertia M(e) and stiff-
ness K(°) enable us to calculate the first seven
eigenmodes of deformable body. We then dispose

of an initial model H(‘) : K(e) whose partial

Liquid level
ith element

spring

Internal node7




dynamic behavior is characterized by the diago-
nal spectral matrix A](e) of order 7 and the rec-
tangular modal matrix Yl(e) of order (140 x 7).
The matrices ‘ll(m) (140 x 7) and AI(') (7x7)
simulating the measurement results are obtained
by calculating the first 7 eigensolutions of the
simulated identified model constructed by intre-
ducing a modification in the initial model, In
this example, this modification consists of re-
ducing by 20% Young's modulus of elements 11, 12
and 13,

In this case, the adjustment method must

wve shovw their relative variation.

(-Ev) 4 Tepresents the initial relative variation,
i.e, the relative differences between the
eigenvalues of the initial model and of
the simulated identified model,

A
(=) ¢ represents the final relative variation,

\’ i.e,, the relative differences between
the eigenvalues of the modified initial
model ({9 u; K®+(aK) 0) and of

the simulated identified model.

therefore enable us to solve the following pro- ige le /&(e) (Hz) (Mv/)\a)i (A’\,/\,)f
blem. Knowing :
i 3315 | -13.671072 | <2,231072
a) the first seven eigenvalues and eigenvectors ¢ * ¢
(with 36 D.0.P. considered as unknown by eigen- 2 37.09 | -14.31107% | ~0.251072
vector) of the simulated jidentified model, 3 39.05 -15.7910"2 | -0.781072
-2 -2
b) the matrices of inertia and stiffness, and 4 40.15 -19.8610 =1.1810
the first seven eigenvalues and eigenvectors of 5 41,11 -18.9310-2 -1.4310'2 . &; :
: - - S
the initial model, 6 3.9 | - 5,061072 | -0.671072 Fogdy
-2 -2 RO
is it possible to determine : ? 60.72 =1o.58i0 =4.5710 E:{-:_‘;‘

a) the regions where the initial model differ

b) Adjustment of the eigenvectors

t their diffe-~

from the simulated identified model, rence is characterized by the quadratic form ¢, L
associated to the matrix H(e) and formed by means !
b) the parametric modifications to be realized of vectors Ay =y (m) _ _ (e) Yy
in the initial model in order to reduce simulta- v v v TR LA
neously the differences between A ® and A (m) T (e) 2 k‘lu
(© w | 1 Ve, 2w, T, m ay N Ay -|A“o | ooz
on the one hand, Yl and ‘ll on the other v v v T
hand, : Sﬁ?&%
Eigenmode| (V) (), ooy
SR
The localization procedure underlines -2 -2 ‘ﬁ'{s“;
very clearly that the initial model and the simu- ! 35.7910 6.7110 &"@‘}
lated identified model differ in the regions of 2 72.191072 18.1210°2
i :«7 o
elon:nnn 1] and 12, The results obtained by ap 3 86.5910-2 “_mo-z &I .
plying the parametric modification method to -2 -2 A .? (3
these two elements are regrouped on the table 4 56.2310 63.7910 ::‘CI \
below, 5 38.271072 29.611072 NS
23,49102 3.0110™2 4
a) Mjuaz nt of the eigenvalues. By -2 - LAY~
M alw-y (e 7 31,8210 10.351072 ~ivg
T-_(;T_ Ve, 2, ceey 7 ' ::":‘ .
v N -.3'\- :
Sed3s
9
aaald il 4 Badlerd SEEEREN . v W w - v L | .
g 0 0 X 9 (Y . .
N SV PRI EMUOAIIS SN g '{‘s“{
S -\s.-.»« S avavy SANAT LR AN \_, Y wi
(AL R -.._-.:Nd' PO Y ,-.':\ Y s.-‘-(-. RSN x‘,\.\\
t&'{s () AL LHL NIRRT . LY ol (o, y i L' n oS, [ 4
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e < % The simulated identified model is characterized 3 {.L_'.v
o v . : . I s
. by the following dimensions : %2}
4 : SIS
2 8 »{»

- e.=e ;1. =1 ; fori=1, 2, » 20 S

i o’ i ° °er °

\ 101 (BN 7

.; The following results are obtained with one ite- Qj: §

] d s- A0
" (BA, /1) ¢ ration : "
) e
~ - . AT
3 1T 2 3 4 § 8 7 a) Adjustement of the eigenvalues : AN,

iy mode number ;
v % AN
4 l;}'ﬂ

: 00 Mode (AAV/N)i (Alv/Av) £ \L& -,-J. ¢

. -7 -2 -2 g

,i " 1 7.71 10 0.69 10 .

2 2 6.01 1072 0.09 10 TR
) 401 - _ Ao S

. %) 3 3.52 1072 -0.17 1072 ;I_
» 204 - _ B
e /ey 4 2.24 1072 0.24 1072
. v £
. . . R - -2
Y, 5 -0.03 1072 -0.03 10

X T2 3 4 5 6 i jumber
29
" These results are obtained without any *

o iteration. The 'second example is a cantilever b) Adjustment of the eigenvectors :
4 beam in transverse vibrations modelized in 20 ' 'F
2 elements with 2 D.O.F.'s per element. In this’ ti'

"-2 cage : N = 40 ; n = 5, We call the thickness Mode (',E:))i (ﬁ;)f Ry
> and the width of the ith element e, and 1, res- A o T
' i t 1 2.80 1072 0.79 1072 ‘

pectively. The initial model is characterized * *

o by the following dimensions : 2 11.54 Io‘-2 0,63 10.2 A ;t:"
. 4t Wt
. -2 ~2 ¥
. e, =e, for i = 1,2,...,20 3 14.82 10 0.69 10 3 '

N L =1,  fori=1,2,...,10,17,...,20 4 8.24 1072 0.43 1072 A

N - < o - - RELALY

li 1.4 lo for i 11,12,...,16 5 10.37 10 2 0.49 10 2 ey

The repartition of the width and the thickness of the three models is described baiow :

A Tt
2 eV 7

< 5
\- ’ t )
~ Width KN N
\‘ 1.44 - - - - - 1 ‘;1‘%‘
( | i O
o 1.34 : | AN
) I I A
2q 1.2 ' NI
) ' I \sﬁl"\
. by ‘ ?
; Wi
™ 1.1 | ' X -’.g"-s: '
o . "% ¥b
r T l. ;'

5 20 19 18 17 16)15!14 13 112{11 10 9 8 T 6 5 4 3 2 N i
% ——a | S )

» 0.9 Lo-o Number of the elements -: '\::: A
$ %‘A.

n) 2o
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Thickness

20 19 18 17

kg 7= Ral Wall 0 0o - 2 h » B L A 8 4 *

¢ S 4 3

. —: Initial mode1 (u® ; x(®))

: Simulated identified model (M® ; k™)

Number of the elements

_______ : Initial model adjusted by the method (M‘®) + (a0 , ; k’® « (am) ,)
a a

6 - CONCLUSIONS

The adjustment precision obtained from
the set of test cases treated are very satisfac~-
tory. The method enables one to locate and cor-
rect the construction parameters initially modi-
fied for simulation. Random errors of + 2% ini-
tially introduced on the identified eigensolu-
tion influence very slightly the localization
process and the calculation of the modifications.

The extension of this method to the
non conservative systems and to case of anon sy-
metrical matrices makes up the centinuation of
this work and is the aim of present researches,
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FIRST-PASSAGE FAILURE PROBABILITY IN RANDOM VIBRATION

OF STRUCTURES WITH RANDOM PROPERTIES

N. Nakagawa, R. Kawail
Faculty of Engineering, Kobe University
Kobe, Japan

K. Funahashi
Kawasaki Heavy Industries, Ltd.
Kobe, Japan

The first-passage fallure problem 1s treated in random vibration
of structures with damping, consldered as a random variable.
First, nonstationary responses are generally analized for random
vibration of structures, which have random properties. Using the
derivative method, statistical values of responses ( mean func-
tion and autocovariance function ) are obtained. Thereafter, the
first-passage falilure probability is considered. It is assumed
that a structure with random properties is subjected to a weakly
stationary random excitation. Applying the average technique, the
Fokker-Plank and the Kolmogorov backward equations are derived.
Then, the first-passage falilure probabllity 1s obtained. From nu-
merical examples, it 1s found that it is necessary to consider the
influence of the structural random properties, since 1t increases
the first-passage fallure probability.

INTRODUCTION

In a structural response analysis,
the ultimate purpose in using stochastic-
process theory 1s to know the reliability
of a structure which has been designed to
withstand random excltations. In the sto-
chastlc treatments of structura responses,
the first-passage fallure probabilitythat
the absolute value of a random response
will go beyond a safe domain for the
first time, has been extensively under
investigation because of its close rela-
tionship to the safe performance of sys-
tems.

Structures have random properties
with respect to the cross-sectional area
and mechanical properties etc. owing to
errors 1n the manufacturing, heat-treat-
ment, and measuring processes. In order
to Judge the reliability of structures
more exactly, it is, therefore, necessary
to treat the first-passage failure proba-
bility under consideration of randomprop-
erties,

A excellent summary for the problem
of a stationary narrow-band process with

siid el 4 Jehere SSUENNL

a symmetric two-sided barrier has appear-
ed in the papers by Yang and Shinozuka
(1,2). They have used the point-process
approach. Gray [3] has investigated the
moments of the distributive function of
the first-passage time. Lennox [4] has
obtalned the distribution function of
the nonstationary envelope first-passage
time. The influence of the critical bar-~
rier's height on the value of P, ( the
probability of system failure ) was stud-
led, in a nonstationary random vibration,
by Roberts [5]. But, in these literatures,
the random properties of structures are
not considered. Authors [6-8] have inves-
tigated the longitudinal vibration and
impact waves of an elastic bar, with ran-
dom properties, and the impact waves in a

viscoelastic bar, with stochastic proper-
ties.

This paper treats the first-passage
faillure probability in random vibration
of structures, with random properties.
First, nonstationary responses are gen-
erally analized for random vibration of
structures, which have random properties.
The stochastic differencial equation of
the system is described. Using the de-
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219 rivative method, the statistical values Letting x(0)=0 as the initial condition ,s;fr

of responses ( mean function and auto- without loosing the generality, we obtain O
y covariance function ) are obtained. The the solution of Eq.(1l), ;tét'
‘ﬁS damping coefficient is assumed as a F%} v
r structural random property. As an exam- t - LR G
«‘ Ple, the responses of a single-degree- x(t) = lo F(t)h(t-1) ar (2) : .

of-freedom system are calculated. This

system consists of a mass connected to a where

Voigt model under a white nolse excita- J

tion process. It 1is found that the stand- = - i-:%

ard deviations of responses increase with h(t) = iI-:imom exp(-L+J41-2" Juot

time and become constant after a long (t20)

time. The contribution of the structural (3)

random property to the standard devia- 0 (t<0)

tions of responses 1s ascertalned.

and

Thereafter, the first-passage failure
problem, which is the main theme in this
paper, 1s treated. It 1s assumed that a
structure with random properties 1s sub-
Jected to a weakly stationary random ex-
citation., Then, the standard deviations
of responses are derived. Introducing the
change of variables of the amplitude and
the phase, the elementary second-order
equation 18 replaced by the two first-
order equations. The analysis 1s a ex-~
tension of Lennox's analysis. Applying
the averaging technique, these equations
are simplified and the Fokker-Planck e-
quation is derived. Furthermore, the
Kolmogorov backward equation is obtained.
After the Kolmogorov backward equation is
solved, under the given initial and bound-
ary conditions, the transition probabil-
istic distributed function and the first-
passage failure probability are obtained.
Numerical examples are calculated and the
first-passage fallure probability and its
density are obtained. Decreasing the bar-
rier value, the first-passage failurepro-
bability becomes greater. It is found that
it is necessary to consider the influence
of the structural random properties, since
it increases the first-passage failure
probability.

NONSTATIONARY RESPONSES IN RANDOM
VIBRATION OF STRUCTURES

General Analysis

Consider the nonstationary responses

3= 4T

Considering the random properties of
structures, the response 1s written as
follows.

x(t)
x(t)

E[x(t)] + Ax(t)
(4)

3
z 3311(t)AP1

.

where E[+] is the mean function of [-]
and Py 1s the statistical parameter.
Considering Eq.(2), the impulse response
function 1s rewritten as follows

h(t) = E[n(t)] + Ah(t)

8h(t) = T %%iﬁl 8p, (5)

E[h(t)] = he(t)

Hence, the mean function and autocovari-
ance function of x(t) are

E[x(t)] = ff E[F(t)Ihe(t-t) dt  (6)
Kx(tx.tz) = f:'ffzKF(szTz)
x E[h(t;~1;)h(t2~T2)dndr2 ]
- I:lifzxphO(tl'Tl)ho(tz-fz)df1dTg
+f%1 (52 BlaN(t1-11 )0 (21, Yandrs

Vet of structures, which have random proper- (n
AN ties, subjected to random excitations.

~ The equation of motion to a single-de- If P(t) is a Gaussian random process, x(t)
LA, gree-of-freedom system consisting a mass becomes a --Gaussian random process, and
- conected to a Voigt model under random then moment functions higher than the
< excitation F(t) is second order are equal to zero. The Gaus-
; sian random process 1s completely defin-
o R(6) + 2uek(6) + wix(e) = L (e) e by Eqs.(6) and (7).

15%
.y where (1) Letting the first term of Eq.(7) be
;; K,p and the second term be K, ,, we ob-
1))

iﬂ w} = k/m, ¢ = c/2mw, tain
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' 8
I K. (t1,t2) = K o (t1,t2) + K__(ts,ta) h QL
N x vl xF\l1st2 xP l,(;) where }_‘; ¥
5 & — .'7",,\ )
Y wg = / 1= u, 35. .5§
‘ 2 T
R K E[Y? Jeudoy ;ﬁ*.h?
! Responses to Nonstationary Shot Noise xﬁ(tl’tz) = 12wl k@
Excitation m Wy
., to#t =T, =Lw,T
b Although the nonstationary shot- xfzztzix( 12 1), 701
3 noise process 1s simply mathmatical ide- 2
:

allzation, Justifications of such analy-

2
x[(A+A, T, +A_TT) CO8 W, T
k! sis to real problems have been found. 17727177371 a’l

2
A nonstationary shot noise is given + (AH+A511+A611)

n o

by
N xsin wqTy + A7 cos “d(tz'
F(t) =L ¥, &§(t-
(®) i=1 1 ¢ Ti) t x 12 + {Ag cos w (t,-
1) xT 8 alta

e T A

E[F(t)] =0 [ (9) t,) + Ag sin wy(t,-ty)

KF(tx,tz) = I(ty) 8§(t2-t,y)
X = A(ty) E[Y?18(t2=ty) |

g

X T, + Ayq cOB wd(tz—tl)

3 where + Ay sin uy(t,-ty)1dT)
£, (t,2t,) 12)
’ N(t) : Polsson process with eilther
4 stationnary or nonstationary (See Appendix I)
' increments
5 Yi : Independent randam variables
' with zero mean value Responses to White Noise Excitation
I(t) : intensity function of a shot
noise
Vo A shot noise, which is weakly sta-
Mer ﬁ:ﬁicted nonstationary arrival tionary random précess, becomes a white
: " noilse becauce this random process has a
. 8(t) : Dirac delta function. constant spectral density. Examples of a
E Uy weakly stationary random excitation are
? are Then,statistical value of responses excitations of an automobile, travelling
at a constant speed on a road having a
Y weakly homogeneous random roughness and
i E[(x(t)] =0 (10) excitations which engines exert to the
“ basis in steady motion.
241t
K o(ty,t,) = E[Y°]f"A(t,) ho(t,-T;)
{‘ xFire ’ 1 07171 A white noise 1s defined by the fol-
- lowing properties.
i x hy(t, Ty) dty
2
EIYT)  _gwg(t,4t,) E[F(t)] = 0 13)
B '—2—2—3 o' 1 2 ( 3
" 2m®wg KF(tl,tz) = 2mK8(t,,t2)
‘ tl
t* x[eos md(tl-t2”° A(Tl) The autocovariance function of responses
£y are
] xe2bWoTy at, _f:xl(fl) ]
'y T
Y K,n(t),t2) = 50733 [cos w,(ti-t2)
) x 259071 cos md(t1+t2 xF7? 2mewowyl d

x e-(wo(t1+tz)(eszot1_l) __%;

x { e_w"(t‘”’){-wo cos Nd(tl“'tz)

-211) drl

: (t, 2 ¢, ) (1)
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t wy 8in wi(ti+ts)} - e~ two(ta-ty)

x { -Two cos Nd(tz—t;)

+ wy 8in wd(tz-tg)}]] (14-a)
2
pr(tl.tz) '-gigiiic [{ Ao cosB wy

x (tz2-t:1) + A3 sin wd(tz-tx)} Z1
+ { Agy cos wd(tz-t;) + Ay 8in Wy

x (ta2-t1)} Z,+ A7 cos wd(tz-tl)Zs
+ AsZs + AsZs + AsZs + A2 +

+ A2Z7 + AsZs ] (14-b)

( See Appendix II )

Setting t, *t,in Eq.(14), we obtain the
variance of responses,

2 7K - -2Zwot - L
alp = 357335? { (1-e ) m.{ Two

+ e 2%wet ( -Tws cos 2u,t

+ Wy sin Zmdt )1] {(15=-a)

xP 3

z - ~
o2 = ler_:la_C_g; ( B10Zy + TaZa + %07,
m? w

a .

~ Ao ~ re ~ I~ ~ A
+ AyZy + AglZs *+ AgZy + A7

+ B2Zy + RaZs ) (15-b)
where
~ - c«,' ~ L ~ 1 W -_u_d_
A= -:g Az= oy s Ay = ‘E(S";: ;uo)
I. s 0 N R; = —‘ﬂ N T‘ --lf,mo- -x’l’
wg

SNER A ¥

ey N ry
A1 'E-‘—‘%d . A.

It 1s found that the variances are inde-
?ezgent on t as t approaches +» in Eq.
1 .

NUMERICAL EXAMPLES

Random responses of the next example
were calculated, In a white nolse excita-

ek - P— v

XK AT R R T Y
‘1',';*.’;""&‘,'#, if\.*‘s“‘? "l_
o A‘o‘ﬁ)‘"ﬂ‘l'ré‘w' DO

PRI A S

3t Ayt f

- . - - - L ..

tion process,
spectral density op(u)---x (a constant)
(16)

Values of statistical parameter and un-~
damped natural frequency of the linear
system are

E{z] = 0, 0_ = 0.01 and we = 1 rad/s

14
The standard deviation and the auto-

covariance of responses to the white

nolse excitation are illustrated in Fig.

& -

— % N T 30

Fig.1-The standard deviation of re-
sponses to a white nolise ex-
itation.

Fig.2 - The autocovariance of responses
to a white noise excitation

1l and 2. In the case of the white noise
excitation which is the weakly stationary
excitation, the standard deviation of the
response maintains constant, after a def-
inite time. In fig. 1 the broken line de-
notes the standard deviation of the re-
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sponse, when the influence of random

property of the structure is neglected.
The standard deviation of responses ow-
ing to c; only is also shown in Fig. 1.

The autocovariances have the freyuency
nearly equal to the undamped natural fre-
quency of the system and it 1is,therefore,
supposed that the spectral density of the
autocovariance becomes greater when w
tends to we; indicating this the proper-
ty of the white nolse model.

FIRST-PASSAGE FAILURE

The important problem in using sto-
chastic-process theory in a structural-
response anslysis is the first-passage
fatlure problem. This problem treats the
failure created when the dynamic response
at a critical point in a structure,
reaches for the first time, either an up-
per bound level or a lower bound level.
In this section the first-passage failure
of the structure, subjected to a weakly

stationary random excitation, with random

property will be considered.
Fundamental Equation

The equation of motion of the sys-
tem 1s

R(t) + 2Cwek(t) + wix(t) = Eﬁﬁl (17)

When P(t) i1s a wide-band excitation, the
mean function and the autocorrelation
function are

E[(F(t)]l = 0O
E[F(t3)F(t2)] = Kp(ti-t2)

(18)
(19)

Further, the specral density function 1is
1 ® ~Ju(ta-t
OF(w) =57 I_. Kp(tz-tx) e Ju(ta-ty)

x d(ta~t1) (20)

When a lightly damped single-degree-of-
freedom system is subjected to a wide-
band stationary excitation, the station-
ary response is a narrow-band stationary
process. The response has, therefore,
zero mean function and the following var-
iance.

w0 (we) wa2e_(we)
o} = TelaT * chagr ('ulh:

+ :'(2c‘-1)u,l, + :'w.wd3~

o e 2o e I ta R e 7t L R Y AL ANLS

87

;. + 2:'(“;’-1)/1-;’;.

+ 2c“wd

+ 2;1 + ;m.;. + C’u‘;xo}
a (V 'O'Vc ) ‘IQF(U.) (21)

(See Appendix III)

Let the envelope process of the re-
sponse be a(t) and the phase angle be
v(t). When ¢ is small, it can be consid-
ered that the response is given as fol-
lows,

x(t) = a(t) cos( wet + y(t) ) (22)

x(t) = -a(t) wy 8in{ wet + Y(t) )
(23)

Substitution of the following statitical
values of ¢:

¢ = (1+4¢) E[z]

E[¢gl =0 (24)
a; = E[(z-E[3])?]
into Eq.(17) yields
%(t) + 2E[gluwe(1+e)x(t) + wix(t)
- B (25)

Using Eqs.(22) and (23) we obtain
8= g [ ~elmaQase) 01

= co8 2(wet+¥)} = F(t) sin (wet+y)]
(26)
ap = -—— [ -zwima(l+e) sin 2(wot+y)

- F(t) cos (wet+y)] (27)

(See Appendix IV)

Pokker-Planck Equation

If the absolute value of the exci-
tation F(t) is not so large, the envelope
process of response changes very slowly
and it is considered that both a(t) and
v(t) change little during the first pe-
riod 0<t<2w/we. Then, by using the aver-
ageing technique into Eq.(26) and (27),

we obtain

a(t) = -gwoa(l+e) - ( F(t)/wem )

... ‘{
-\%fv\
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x sin (wot+y) (28)

(29)

By using the ensemble average and the
fluctuating components, the terms con-
taining the excitation process are re-
written as follows,

R NREI B LF

(F(t)/wem) sin (wot+¥) = mi(t) + vy(t)
(30)

o R K A

and
(F(t)/woma) cos (wot+y)

= ma(t) + va(t) (31)

W R A e o

&

where

T0(we) stationary term,

ml(t) = 2awgm

mz(t) = 0 + stationary term

Omitting the stationary term in Eqs.(30)
and (31) gives

1[0((\)0 )
2awim?

a(t) = -zw? a(l+e) + - vy (%)

(32)

and

V(t) = —vy(t) (33)

The response process to the wide-band

noise excitation becomes the narrow-band,
if the correlation time of the excitation
process 1s smaller than 1/gw,(l+e), since
the relaxation time of the envelope pro-
cess, in Eq.(32), 1s of order 1/zwq(l+e).
Hence, the fluctuating component v(t)

can be regarded as the delta correlation

process and we obtain
L.{ ) (wo) /ﬂ@szo;
2awsm:  ~ T wem

ST,

X ey

- sl
-

L35

& = -Cwea(l4€) + —iy—y

x D(t) (34)

and

. /TIOFZUQ S

Y= Gema DY)

>

(35)

L% Ta S

7

»

where D(t) 1is the delta correlation pro-
cess, 1.e.,

E[D(t)D(t+1)] = &(7) (36)

" s'a%als

Ry

-

5. "Ir1wn-1v-w*~1r—' S R

v s

rl I
W ?’\ ‘:i
\

l

Introducing the nondimensional quantity
r=a/o,, Eq.(34) becomes
1
r = ~Zwp(lte)r + 5;;:;??6_17_5
1
- wom/v;;sz(t) (37)

Using Eq.(37), the Fokker-Planck equation
can be given as follows,

%Ep{r} = %;[ two(l+e){ r

1
2;w3mz(VF+V;)r} Pir} 3

1 a2

2utm (Vgrv) Pir}) (38)

where p{r}(r,ro; t,to) 18 the transition
probability density of r(t).

First-Passage Failure Probability

From Eq.(38), the Kolmogorov back-
ward equation is

%% = —fwo(l+e) { ro- 1
2;w8m’(VF+Vc)r.

) 1 3alp
x1§% +

2wim? (Vp+v,) arg

(39)

In order to simplify the analysis, the
following change of varilables 1s made,

Se =2, T = Zuet,
X

b = ac, and V= 2fwim (YF+VC) (40)

where b 1s the threshold level.
Equation (39) now becomes

L - (e S —E—
a?(1+€)VS,

2
+_1 3%
a2v 23S}

b &,
(41)

When P(S¢,T) 1s the transition probabili-
stic distributive function given by the
transition probability density p{(S,S¢;%Te),

- -JI——"-L

R "3; Vs
. 4 AN § é‘i'~
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k,

2 we obtain 2
iy ) 3 K14

r3
-
R

-

P(Se,T) = !: p(8,S03T,T0) dS
Initial and boundary conditions are

lf and
. To = 0 (42) P(y,0) = 1, *
f' i
iy The initial and boundary conditions are p¢ (1¥0./8)aV oy _ SN
3 set as following, > H L (49) GRS
\"! :.. ::-.'._
d e
Ky P(Se,0) = 1 and ;«;.f"x
P(SOQ°) =0 P(ostl) < » *
[} 5 (u3) ;\-"NcA X
2 P(1, ) = 0 Using the technique of separation of var- ;‘;:."-"
3 P(0, 1) < ® iables, {':;?.g
: . 52
" Integrating Eq.(41) with respect to S P(y,t1) = ¥(y)-T(t1) (50)
gives
.r, we obtain
)
Sy P P
' = = =(1l+g) {S.-—rJ——} e "
4 at aT(1+€)VS,  8Sp o sy X 5D
; 1 3%p T Y Y
+ =22 (44)
@ a®v as} where the dot denotes the differentia-
tion with respect to the time ¢, and the
j' ' Thereafter, consider the statistical g:ig:cgeggte? the differentiation with
:Q parameter €. Approximating From Eq.(Slg we obtain
‘h lelso/e (45) T = Toe” M1 (52)
we obtain yI" + (Q=y)¥' + AY = 0 (53)
|
o L m _(12=2) {S,- = The series solution of Eq.(53) 1s the
3,'% at ¢ o (lt";/‘)vs" 35e confluent hypergeometric function given
- . as follows:
% + =222 (46)
* a2v s Y = 3F;(*2,1,y)
® (-1)(1=A)eees(n-1-0)
. It 13 considered that the probabilistic =1 + (n1)? y
"ol distribution P exists in the region n=1
» bounded by the two solutions of Eq.(46). (54)
b, Since Eq.{46) indicates two equations,
A each one, with different coefficients, - -
(’“ the first equation will be treated. g:i:ng%;ézgtig’n::: :éﬁ:::ﬁ:]{‘:e A 1s ob
'-: The introduction of the following 1+0./7)aV
:n new parameters, ,F,(-kn,l,(_‘—:)-—) = 0 (5%)
4
o (1+o;/;)a’v 2
x5 yE: — S
e 2 (47) Hence, the general solution 1s
> t: = 2(140,./8)T P(y,t1) = .2. 8 1F1 (=2 _,1,y)e *n®1
o 1 z sVl ne1 nl 1 n’"?
n\‘ ‘-L
o 1+0_/T)alV RN
g leads to the next equation, ( Ocyc—% ) (56) ;:}
b, M
{ '
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Coefficients 8, in Eq.(56) are given by

Eq.(49-1). Thus, the required distribu-

tion function of the first-passage fall-
ure probabllity is obtained by the next

equation,

F(y)tl) =] - P(y’tl) (57)

and the first-passage probabilistic den-
sity function 1is

[
£(5,8) = I BphpaFa(-2,1,y)e T nt
n=

1+0_/z)a2v
( O<y<——8" ) (58)
2
The moments are
me =[5 5 £(y,t1) at, (59)

NUMERICAL EXAMPLE AND DISCUSSIONS

The following values were used in
order to calculate the distribution func-
tions and the density functions of the
first-passage failure,

E[z] = 0.02, o, = 0.1 E[z].

14
we = 2 rad/s,
initial conditions: t=0, x(0)=0,

and

threshold value: b=°x’ Zox and 3cx.

The first-passage fallure distributive
functions are illustrated in Fig.3 for
the threshold values, b-ox, 2°x and 3°x'

When the threshold value i1s taken to be
small, the first-passage fallure distii-
butive function increases rapidly to 1.
The results which neglect the influence
of the structural random property are
indicated by the broken lines for three
values, respectively. These lines exist
between the solid lines obtalned for
oc-o.lE[;]. Yang and Shinozuka [1,2]

have investigated the first-passage fail-
ure problem by using yhe point process
which was assumed by the Polsson, Psedo-
Gaussian, and Marcov types etc. They have
concluded that the Marcov process which
was used in this paper, is the best ap-
proximation. For a greater threshold val-
ue, the area of oblique line becomes
wide. This indicates that the influence
of the structural random property is im-

L SERERNSS
T
a
! — Gy = 0.1 B8
w
o s m Vs 26 > 30 35 %0
T(=3amt)
Fig.3 - The first-passdge fallure
probability distributive
function
1
(¥ b & — G n 00 EM
-~ = &=0
8
»
e
Y]
3 20
T(=Soht)

Fig.l4 - The first-passage failure
probability density

portant for this value.

The first-passage failure proba-
bility functions are shown in Fig.l4 for
three threshold values, b-cx, 2°x and

3°x' The density function has the re-
markable extreme value for b=ox.

REFERENCES

1 J.N. Yang and M. Shinozuka, "On the
First -Excursion Probability in Rtationary
Narrow-Band Vibration IY J. Appl. Mech.,
Vol.38, Trans. ASME, Vol.93, Series E,
pp. 1017-1022, 1971.

2 J.N. Yang and M. Shinozuka, "On the
First-Excursion Probability in Stationary

PR

., '-‘.“ "‘..'q

(NI
.l‘ “.

ettt

o e e
.

~

s

Fey

“f:" Y
"'

‘r

4

Ty
’
1)
2
’ .

Pl

ey
)

'y
1] "
"

4
LA

’
i

XX

Vi

Y
XX

’

o ettty

X
4

(3 o ]

/ 4
n.,

')

.,'
I’I/

P4
,
5"
o Ly

s

S




“ AD-R148 884  THE SHOCK AND YIBRATION BULLETIN PART 3 STRUCTURAL
ANARLYSIS FATIGUECU) NAVAL RESEARCH LAB WASHINGTON DC
GHOCK AND VIBRATION INFORMATION CENTER SE
UNCLASSIFIED BULL-48-PT-3 F/G 28/11




MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




e A O TR N X W R T o AT S L ATIUL S NP LI e A S L B T R TN A O T X IR
0
Xy
X
% Narrow-Band Vibration IIY .'I‘ Appl. Mech., w
3 Vol.39, Trans. ASME, Vol.94, Series E, 5_3
NS pp. 733-738, 1972. Bit =t trte *_'r.u TiT
mre, 3 A.H. Gray Jr., "First-Passage Time
JE 4 in a Random Vibration System? J. Appl. o
Bl Hech., Vol.33, Trans. ASME, Vol.88, Se-  Cpp = RR(tadts) 8 "—(Tl*'l'z)
ries E, pp. 187-191, 1966. a
) 4 w.C. Lennox and D.A. Fraser, "On ®
'$ﬂ the Pirst-Passage Distribution for the D = B0 d
-2 Envelope of a Nonstationary Narrow-Band it ug W [
o itochastic Process? J.6App1. Mech., Vol.
e 1, Trans. ASME, V0l.96, Series E, pp. -
L3 793-799, 1974, Ejp = Tatax Tuty
A 5 J.B. Roberts, "Probability of
: First-Passage Fallure for Nonstationar -
: Random Vibration? J. Appl. Mech., Vol.h2, Fig = (Tatta) ¢ (Tatty) J
%%‘ Trans. ASME, Vol.97, Series E, pp. 716- -
nd 720, 1975. T, =, - &4
& 6 N. Nakagawa, T. Inagaki, T. Iwa- wd
Ay tsubo and R. Kawal, "The Longitudinal }
S Vibration of a Bar with Random Proper- B -ty - Twy
S ties" Memoirs of the Faculty of Engineer- 2 e o
ing, Kobe Univ., No. 19, pp. 105-120, a
. 1973.
Pﬂ 7 N. Nakagawa, T. Iwatsubo and R,
| Kawai, "Longitudinal Impact Waves of an
'y Elastic Bar with Random Properties) Appendix II
%Q hngnﬂSm.M?.hys?n?m-
Ny nese Vol.40, No.33 pp. 2776-2783 - -
ny ToT4 s ’ ’ Z1(ti,t2) = E%i{e Twe(t,+ta)
8 N. Nakagawa, I. Kawahara, T. Iwa- ° ~Cwg(ta=ty)
e tsubo and R. Kawal,"Statistic Analysis e >0 17}
) of Impact Waves in Random Viscoelastic -1
259 Rods" Theoretical and Appl. Mech., Vol. Z2(t,,t2) = —;—-[{1+§wo(t:+tz)}
> 25, pp. 187-197, 1977, Proceedings of the ("]
u:ﬁ 25th Japan National Congress for Applied
K Mechanlcs,1975. x e-ﬁmo(tl"'tz) - {14Zwe(ta2=t,)}
! ~gug(ta~ty)
N Appendix I xe ]
“,“ -1 2
. D Z23(t,,t = +{1+ ti
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Ae = - titt

] —P -%l( 1+t2) x {guwe 8in wy(ta=ti) + wy
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Ay = '1"‘ x cos wy(t2-t1) +-'he"""(t"t‘) n

Are = B2 -%l(tﬁta) +2k‘(tn4h)’ x ((ct"’"“’;) 81n wy(ta=ty)
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S A A

R,

>

Apy = -E1 *-Z%*(tx*t:)
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x e~tweltatta) e, oyp wa(ta+ts)
+ wy cos wd(tl...tz)}_-“l’}e"uo(tli'tz)
x {(c’mi-wé) sin wd(t,+tz)
+ 2Zwouy cos wd(t1+tg)}
Ze(ty,t2) .he-ﬂﬂo(tz-tl) {CN.
X cos md(tz-t;) - wy 8in md(ta-t;))

- tze‘cmo(tl"'tz){cu. cos uld(tr"tz)

Zs(t1,t2) = ig(t,_tl)e-zw.(tz-t,)

x {zwo cos wd(tz-t;) - 8in ud(t;-tl)

sin ud(t,+tg)}

x 0y} +'&ge-;m°(tz-t‘){(:’mi-w;)

X cos wd(tz-tl) - 2 sin md(tz—t|)

Cwoug} "ﬁ}(tx+tz)e-Cwo(t.+t,)

{zwy cos md(t;+t,) - 8in md(t1+tg)
- +
wg) - dremt0e (C1¥02) (ayg )
X cos md(t1+tz) - 2Cwowd
x sin wd(t1+tz)}

Zo(t1,t2) = (t14t2) Gi(ty+t2)
= (ta=t1) Gi(ta-t1) + g7 { Zws
X Z5(t1,t2) + wyZs(ts,ta)} +de
x {(;zwﬁ-wé)z.(tl,tz) + 2Lwouwy

x Ze(t1,t2)}

Zo(t1,t2) = (t14t2) Ga(ty+ta)
- (t2=t1) Ga(ta-t1) + &3 { tw,
X Zo(ty,t2) - wdz,(t;,t,)}+-%5

x {-(z?uwf-w)]) Ze(ti,t2)
+ 2§No“d Zy(ty,t2)}
Gi(t) = = ¢ e-c”°t(;w. sin w,t
w§ a

+ wy cos wyt) --&ie';“°t{(c’m8-wa)

x sin wyt + 2cu.md cos mdt}
Ga(t) --%zt e"”‘t(-;u. cos wyt
- ~Luwet, 2 2 2
+ wy 8in wgt) ﬂae {(ctoi-u})

X cos wyt - 2Twowy 8in w,t }

Appendix III

Let Rx(tz-t;) be the auto correla-
tion function. When t+=, we obtain

a; = E[x2(t)] = R, (0)

= . H(w)|?0p(w) dv (60)

where H(w) is the transfer function.

In the case of a wide-band noise where
the specral density function changes
slowly near at w=iwo( undamped natural
frequency ), the value of the spectral
density function can be neglected in the
region far from w=tw,. For << 1, we
can rewrite Eq.(60) into

o % o (we) [, [H(w)|? dw (61)

Using Eqs.(61) and (15), we obtain Eq.
(21).

Appendix IV

Differentiating Eq.(22) with respect
to t gives

x(t) = a cos (wot+¥) - awesin (wot+y)

- ya sin (wet+p) (62)

Letting Eq.(62) be equal to Eq.(23), we
obtain

a cos (wot+y) - &a sin (woet+y) = 0
(63)

Further , defferentiating Eq.(23) with
respect to ¢, we obtain

R(t) = -awp 8in (wet+y) - awe(we+¥)
x cos (wet+y) (64)

Substituting Eq.(64) into Eq.(25) and
using Eq.(63), Eq.(27) 1is obtained.
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if\
%3* A proposed cumulative fatigue damage law is derived
e which uses fracture mechanics theory as its basis in order
o to predict the fatigue life of structures subjected to
S several levels of sequentially applied stress. The pro-

posed law applies to all initial crack (i.e., flaw) sizes
. in the structure. The proper boundary condition to be im-
Fhﬁ posed at the interface of the two stress regions is
3 analyzed.
SN

INTRODUCTION to include the effects of initial

This paper deals primarily with pre-
dicting fatigue life and/or probability

.
Y ()
< A 2

g.* of fajilure of structures with either
?1\ known or undetected initial cracks
BN (flaws) that are subjected to step-
2 stress sinusoidal or random vibration.
] An example is an electronic assembly
L (e.g., an avionics computer) that is
first subjected to a laboratory random
. vibration acceptance test and subse-
S0 quently subjected to the in-flight ran-
ﬂéﬂ dom vibration of a high performance jet
it aircraft.
¥
:bﬂ. Initial cracks (flaws) either exist
M in the structural material as disloca-

2 tions or metallurgical inclusions or
are introduced during manufacturing fab-
rication or assembly operations. 1Ini-
tial crack sizes can range from micro-
scopic to macroscopic. Such initial
cracks reduce fatigue life. The larger
the crack size, the shorter the fatigue
life,

In some cases relatively large ini-
tial cracks go undetected for a variety
of reasons. In other cases it is im-
practical to repair the crack or re-
place the part even if the crack is de-
tected. These situations occur fre-
quently enough to be of practical impor-
tance. Fracture Mechanics is the study
of a material's ability to withstand
such initial cracks and not fajl catas-
trophically. Bxisting cumulative
fatigue damage laws (e.g., Miner's
linear cycle ratio law) do not attempt
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cracks in the material being stressed.

FPRACTURE MECHANICS

Linear Elastic Fracture Mechanics
theory will be used for this analysis
to relate applied stress, crack geo-
metries, material properties, and crack
growth., Pig. 1 shows a particular load-
ing and crack configuration. The speci-
men width is 2b. In this article, the
crack half-length, a, will be referred
to as the crack length to simplify the
wording. The actual crack length is,
2a. The stress away from the vicinity
of the crack is S. AS is the stress
range; that is, it is the double ampli-
tude of the sinusoidal stress variation

with time. Static stresses are not
included. Y is a dimensionless geome-
trical parameter that depends on the
dimensions of this particular config-
uration.
EXNES
f———— 2~
1/2
—.1 20 In—
| | s
Fig. 1. Center Cracked Strip Loaded

in Tension
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Y= /i (uc s 1)

2b

The stress intensity range AK is a
function of Y, AS, and the crack size.

AK = Y AS v/a (2)
KPa / metre (ksiv/In:)
‘ Pig. 2 shows a typical cyclic

fatigue crack growth rate curve as a
function of stress intensity range. N
is the number of applied stress cycles.
There is a threshold value AKyp below
which cracks will not propagate. Eq.
(2) indicates that AK; (the product of
E Y, A8, and the square root of the ini-
¥ tial crack sisze) must be less than AKy),
H for the crack to be in the nonpropa-
- gating region. Por larger values of

AK, the curve becomes a straight 1line

on the log-log plot. This is the
’ stable crack growth region. The
govorning equation is that of Paris 1,
H

i ¥in

10 L T
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5L FROPAGATION
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S
)
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! 0 100 1000

STRESS INTENSITY RANGE (4 K), MM 4 meive
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Fig. 2. Typical PFatigue Crack Growth
Rate as a Punction of Stress
5 Intensity Range
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:'—‘- Co (AK)e metre/cycle (3)

(in./cycle)

vhere 9 and c, are equation constants.
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The crack will grow in a stable
fashion until AK reaches the material's
critical value AKX, (fracture toughness)
at which time the crack growth becomes
unstable and the part fails catastroph-
ically. Table 1 shows several typical
material parameters.

Bg. (3) can be integrated by substi-
tuting Bg. (2) for AK, by separating
variables, and letting ¢ and Y be con-

stants. The case of interest for this
paper is for 6 > 2, The result is
2
NS e e
coasv® (0-2) ()
6-2 8-2
1 1 cycles
W o6 e
or
8-2
as (L) - (5)
aj
-_2_
(8-2) co 48°¥N e-zmtte (inches)
2

where aj = initial crack size size
{(length)

a = crack size at N cycles

It should be noted that these egquations
apply in the stable crack growth region
(1.‘0' Alth < AK < Ak)

The critical crack size a; where
unstable crack growth occurs can be
calculated using BEq. (5) by letting N =
Ng¢, where Ng is the cycles at failure
(f.c., intlnfte crack growth rate).

ng can also be calculated using Eg.
(2):

Y 48

2
4
ac = L.] (6)

EXAMPLE 1

Por the configuration shown in Pig.
1, calculate the critical crack length
and cycles to failure for the stress
ranges of 69 MPa (10 ksi), 138 MPa (20
ksi), and 207 MPa (30 ksi). Also calcu-
late the crack size versus cycles for
A8 = 138 MPa (20 ksi). Calculate a/ag
versus N/Ng for the above three values
of stress range.
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TABLE 1. Material Parameters
Co AKe .
Material o (m/cycle) | (in./cycle) | MPa /& {(ksi vInm.)
A-286 3.24 | 2.8x10-11 | 1.1x10-9 132 120
Ad471cL 4 | 1.4 |7.4x10°24 | 2.9x10-12 220 200
Cr-Mo-V 4.09 |9.2x10-14 | 3.6x10-12 33 30
4340 4.65 |5.0x10"14 | 2,0x10-12 55 50
7075-T6 4.00 |1.5x10-10 | 6.0x10-9 22 20
Given: 10 0.4
Material 7075-T6 Aluminum Alloy ok
2ay = 5.08 mm (0.2 inch);
2b'= 127 mm (S inches) s o =8.10 mm 0319 in. los
Refer to Fig. 1 and Table 1 g7
ARe = 22 MPa V' m_(20 ksi v In. 2
ARep = 2.2 MPa Y @ (2 ksi n.) g‘ _
€o * 1.5 x 1010 m/cycle s 7 °-2‘5
(8.0 x 10-9 in./cycle); o = 4 o s
Y = 1.77 from Bq. (1) =
AR; = 6.2 MPa /Y m (5.6 ksi /In.) 8, los

for AS = 69 MPa (10 ksi)
ARep < OK < AR

Therefore the crack is in the stable
propagation region.

As a Ng
(MPa) | (ks 1) (lll)'finches) (cycles)

69 | 10 |32.5] 1.28 1.57 x 104
138 | 20 |[s.i0] 0.319 729
207 | 30 |3.61] 0.142 62

It can be seen that a. is inversely re-
lated to AS. The crack size versus cy-
cles for AS= 138 MPa (20 ksi) is shown
in Prig. 3. Pig. 4 shows the relative
crack size versus cycle ratio for three
values of AS and an initial crack size
aj of 2.54 mm (0.1 in.). It can be
seen that a/ar is dependent upon AS.
Examination of Bgs. (4) and (5) shows
that both a/ac and N/Ng are dependent
upon AS. Therefore, cumulative damage
laws such as I(a/ac) = 1 and 1 (N/Ng)
= 1 do not accurately apply for step-
stress situations.

STEP STRESS
The growth of a crack under

sinusoidal stressing will bhe analyzed
from its initial size aj; through two

Ry s"'\
3 ‘SQ*\ yor

95

2 % =2.54wm ©.1in,)

0 A -t 4 1 A A n_l 0
0 100 200 200 400 %0 700] 800
79 = Ng

CYCLES, N

Crack Size versus Cycles for
AS = 138 MPa (20 ksi)

levels of step-stress until the criti-
cal value is reached and the part
fails. The previously described frac-
ture mechanics equations will be used.
Pig. 5 shows crack growth to failure.
for both levels of step-stress AS; and
AS2 applied independently. rig. 6
shows the crack growing from an initial
value ajj; to aj after Nj cycles at AS).

The stress level is then changed to
483. The initial crack size qz at
stress AS; is the same as the final
crack size aj after N3 cycles at 48;.
Thus, the crack size remained the same
at the interface of the two stress re-
gions. This is the only boundary condi-
tion imposed and is the key element of
the entire analysis.

Fig. 3.

The crack continues to grow at
stress level 4873 for N3 cycles until
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Fig. 4. Relative Crack Size
versus Cycle Ratio for
a; = 2.54 mm (0.1 in.)

Define:
Dl -ll— =
“fl
cycle ratio partial damage at 4S)
. .
Dz -—2— - (8)
ufg

cycle ratio partial damage at 483

Therefore, N2 = D2N¢g, (9)

Ne N Using Bgs. (4) through (8) and alge-
2 Nny braic manipulations, D can be calcu-
N (CYCLES) lated. The result is

Fig. 5. Crack Growth versus Cycles; Dg=1-D1 X (10)

AS, and AS, Applied Independently where

e | L

1 -(2.
AS) APPLIED FIRST / ac
FOR Ny CYCLES / X o

1-1&.;5
ac

Fl -(aivzasiz )9.52_ ]

aK¢

CRACK SIZE, o

N(CYCLES) I 1 _(.gzaszz ) 'eiL
L\ axe? .

The fatigue 1life N can then be
calculated using Bq. (92).

Fig. 6. Crack Growth versus Cycles;
AS; and Asz Applied Sequentially

the critical size acy is reached; at Eq. (10) may be rearranged in a
which point failure occurs. N2 is the form that represents the proposed
fatigue life that is desired to be cal- damage law. Failure occurs for two

culated, seguentially applied stresses with

N

W
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X cyc‘l'; ratio damage expressions D; and EQUIVALENT DAMAGE 2 o
4 D2 wvhen
) The term DX in Eg. (12) may be 2{g4.
r) DX + D2 =1 (12) thought of as iue equivalent damage at Sk
; AS2 that is done by N; actual cycles at Meh
X is an algebraic function of the ini- Asy. There corresponds an equivalent . ¥
tial crack size, the applied stresaes, number of stress cycles at AS; to pro- -
a geometrical parameter, and the mater- duce the same damage as N) cycles at
ial's fracture toughness value, 483;. Define the equivalent damage and
cycles as D; nnd Nje respectively.
The proposed law is a simple expres- Prigs. 7 and 3 amage cumulation
X sion similar to Miner's law and reduces for the ltop-ltrul cases of A8y > A S8
to Miner‘s law for X = 1. X may be and A83 < As{ D1, D2, D)o, and N),
; thought of as a correction factor to ac- are shown. is the cycles at 48j.
) count for the crack propagation and Pajlure occurs for N = Ny = fatigue
) failure dependency upon the values of life at AS3.
= A4S, ag, Y or A4K,. Given that aj, Y and
0K, are constants for a particu |t con- Dje = D1X (14)

fignution, the following can be noted:
Nige = Ng2 Dye (15)

ELASTIC-PLASTIC LIMITATIONS

I A

X > 1 for A8y > 4813 Dy + D2< 1

X < 1 for ASy < AS33:Dy + Dy, > 1
2 1750 2 Gowda and Topper [3] have shown

5
“: X = 1if aj << ac, and aj << ac, experimentally that for mild steel
‘?? plates subjected to cyclic inelastic
i For a% s acy the part will fail as strains the crack growth rate can be
QX soon as AS3 ll applied. D3 = 0 for a; expressed as
i = apc2. By setting D = 0 in Eg. (12),
the propoud damage lav applies for da 2%y 5 . AR &, (16
y 1 an " C1 ( c2 { )
3! Dy < =
5 The first term predominates in the
EXAMPLE 2 elastic region. The second term
A predominates in the plastic region.
2 Same configuration and dimensions Both terms are of the same form as the
as for Example 1. Paris crack growth rate expression in
| Eg. (3). me:s, &lt can be deduced that
- 2, . the propos amage law (Eq. 12)
a; = 2.54 mm (0.1 inch) accurately appliuifzr cases \lvher: a8y
oy and AS; are in either the elastic or
: ﬁ:g : 239, :;: 88 ::t;' plastic region exclusively but not for
-4 cases vwhere they are in different
9 1 regions.
. X = 2’327’7' 0.43 Eq. (16) further suggests that a
i different damage law might apply for . -
] the case where As and AS, are in dif- o
3 Ngy = 729 cycles; Ne, = 62 cycles ferent olnti.c/pla tic regfons. g
i Let N = 219 cycles N
i EXPERIMENTAL VERIFICATION ISEdN
i :h:;.““ P1 = 0.3 which s less then A literature search yielded no ex- % 2
] perimental results to verify or refute .
Wy Dz =1 -D; X = 0.302 the proposed damage law for the case A
23 where the initial crack size is large Y, .
Ky N2 = D2 Ng, = 19 cycles compared to the critical crack sigzes at .w-"_,.-\‘-\-
" 48] and B;b. However, Dowling [4] re- NN
e Thus, the fatigue life at 48; is 19 ports on laboratory step-streas experi- : S A
id cycles. mental results where the specimens pre- i N
sumably have very small initial crack 230
Dy + D3 = 0.602 # 1 . sizes. An appraisal of the accuracy of 9
‘. Miner's law in this case would also be AR
K, Thus, Miner's 1law would not have an appraisal of the proposed damage _.'-_,.\:,s
s accurately predicted the fatigue 1life law. IR
ﬁ :2::::“10521 ‘A‘St;c’..u"mtothuils cg:.l: .x .: powling defines crack initiation as -,::::*.;
h 2.327 # 1. a tensile mode crack across several g
\
1, 97 \.,- A
\\'n‘-\‘*‘
t,; .J'.\-"‘.'
Oty
‘§ 3
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'v"""mw e L . > o .
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Fig. 8. Damage Cumulation for
grains, The following results are fatigue curves. Thus, there exists a
reported: random root-mean-square (rms) stress o

Several cycles of plastic straining
are required to initiate a crack.

Linear summation of cycle ratios
(Miner's rule) is close to unity if
(1) the specimen is subjected to
several cycles of plastic prestrain-
ing to initiate a crack for the
case of sinusoidal step-stress test-
ing, or (2) if the specimen is sub-
jected to random stressing where
crack initiation normally occurs
early in the life of the specimen.

Linear summations of cycle ratio
damages deviate from unity for
most when the difference between
the applied stress levels AS; and
485 is greatest.

These test results are consistent with
the analytical derivations in this
paper; namely, the derived equations
apply in the stable crack growth region
(4Kyp < AK < AKo) and AS) and 787 must
be ?n the same elastic or plastic
stress region.

RANDOM STRESS CRACK GROWTH

Por either single or two-degree-of-
freedom systems, a calculable relation-
ship (5] (6]lexists between a material's
sinusoidal "S-N" and random “g-N"
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iRty a0

P,
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that will propagate a crack in a given
average number of cycles of the same
size as that of a
corresponding sinusoidal stress aAS.

Fig. 9 shows both the sinusoidal
and random fatigue <curves for the
7075-T6 aluminum alloy. 8 is the sinus-
oidal stress amplitude which is equal
to half the stress range AS. o is the
random rms stress. For the random fa-
tigue curve, N represents the average
cycles to failure.

The general expressions for these
fatigue curves are

s _g_s =aA N8 an
o=cnN "1/8 (18)

where A and C are material constants
and 8 is a slope parameter [5] .

At a given number of cycles,

8 __2A

o C

Por 7075-T6, A = 1240 MPa (180 ksi); C
= 552 MPa (80 ksi)

(19)

48 = 4.%

T
AR
o d e T 2N

M YO

calculable
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Pig. 9. Sinusoidal and Random Fatigue
Curves for 7075-T6é Aluminum Alloy

In this case, a sinusoidal stress range
that is equal in magnitude to 4.50 will
propagate a crack the same size as a
random stress of rms value o for the
same number of cycles.

RANDOM STEP-STRESS

Por the case of two random rms step-
stress levels o) and o2, the equivalent
sinusoidal stress ranges can be deter-
mined using Bqg. (19). Por 7075-T6, 48)
= 4,5 017 A8 = 4.5 o3. The fatigue
life Ny is then calculated by using
Egs. (7) through (12) as in Example 2
with the above values of AS) and A 82 ap-
propriately substituted.

SCATTERBAND FATIGUE CURVE

e el
A material's S-N fatigue curve is erfp (0) = 07 erfp (=) = 0.5
typically nota single line as shown in p £
rig. 9ibut a videir scatterband of fail- er p(""‘) = - er p(“)
ure points. This scatterband can be
represented by 1letting the constant A It should be noted that F(N;) ¢ '“'*o)
in Bg. (17) and Fig. 9 become a random unless X = 1 and that F(Np ) = F(N)rp
variable. Let A be Gaussianly distrib- for N = 0. The reason is that Ny, is
uted with average value R and standard associated with region II where ac; #
deviation A. ag]- The probability of failure can be
t ought :t as the probability of th:
crack size a exceeding the critica At
Define: l:l. ac. If ae2 f< acl (1.,.,1 X >1), ; 4 o
Region I: AS = AS 0 <Ny <N | 4 “1 ) > P(“l)- I ac2 > agl (i.e., X <
9 17 92 F1 20y 1), Mnye) <F(Np). ;
Region II: A8 = 4833 0 <N < = Regions I and II can be very dis- :
0 < Ny < Ng joint in time. Many calendar days can —y
- - k2 exist between laboratory acceptance W
test vibration and in-flight vibration
(See Pig. 7) as an example. Bach of the stress &3
cxcln N} and N may be considered to be ok
P(N3) = probability of failure at discrete, not continuous. A part may
N cycles survive N; cycles at AS); only to fail
@
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X
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r(lll.) = probability of failure at
LI cycles

P(N) = P(Ny; ,M) = probability of
(M ( 1, not failing in
region I and
failing in
region I1I

The following can be shown [5] s

x((n, /B
FP(N, ) = erf _ —1) - + 0.5
1 Pla N

(20)
x| (yn, x\2/8
PN, ) = ort —|{-2=) -1}]|+ 0.5
1) %% Ne, ’
(21)

F(N) gy =

= N, X 1/8
oxtf, %{(“L+l_) -1; + 0.5
£, N

(22)

where erfp (a) = Papoulis' [7] Error
Function

2
a -y /2
erfp (a) = —1—/27 ‘g e ay
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during a portion of the first cycle at
A89 if ay) = agy or if A8z is large
(e.g., = the uftl-ate stress). Thus,
P(N1) = PF(Njge) is not s general
condition to be imposed at the boundary
of regions I and II.

EXAMPLE 3

For the material, configuration,
and dimensions of Example 1, calculate
the fatigue life N; for the step-stress
random vibration stress case where o) =
30.6 MPa rms (4.44 ksi rms) and op = 46
MPa rms (6.67 ksi rms).

Given:

N1 = 146 cycles; aj = 2.5 mm
(0.1 in.)

A = 1240 MPa (180 ksi); _
A = 124 MPa (18 ksi); A/A = 10

B = 9.65

01 = 30.€ “Pa rms (4.44 ksi rms)

Op = 46 MPa rms (6.67 ksi rms)
Equivalently

4sy = 4.5 o3 = 138 MPa (20 ksi)

48y = 4.5 02 = 207 MPa (30 ksi)

Ngp = 729 cycles; Ng, = 62 cycles

ac, = 8.10 mm (0.319 in.)

ac, = 3.61 mm (0.142 in.)

D] = Nl/Nfl = 0,2
a} = 2.95 mm = ap;, (0.116 in.)

21 - 0.363; %21 = 0.817
ac) acy

X = 2.327; D1, = D)X = 0.465

D2 = 1 - Dy, = 0.535

In crossing the boundary from
region I to region II, a/a. went from
0.363 to 0.817 and the damage went from
Dy = 0.2 to Dje = 0.465. The crack
size a3 = az4 = 2.95 mm (0.116 in.)
remained the same at the boundary. ac
changed from 8.10 mm (0.319 in.) to
3.61 mm (0.142 in.).

N2 = D2 Ng; = 33 cycles to failure
P(N;) = 0.0618

100
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P(N],) = 0.222
P(N=M2s33) = 0.5

It can be seen that the probability
of failing at N = Ny is 0.5, not unity.
This is because the scatterband repre-
sentation of the fatigue curve places
tailure both before and after the value
of N2 as shown in Pig. 7.

The fatigue life is Np = 33 cycles.

CONCLUDING REMARKS .

1. The proposed damage law for either
sinusoidal or random step-stress
fatigue is similar to Miner's
linecar cycle ratio law but contains
a correction term which accounts
for the dependency upon the values
of stress range, initial crack
(flaw) size, the geometrical para-
meter, and the material's fracture
toughness.

2. The proposed damage law reduces to
Miner's law wvhen the correction
factor has a value of unity.

3. The proposed damage law is limjited
in application to those cases where
the crack growth is in the stable
crack propagation region and where
both stress levels are in the
elastic or plastic stress regions.
These are not considered to be very

severe limitations on applica-
bility.
4. Reported step-stress test results

tend to confirm the proposed damage

law. Purther verification for
large initial crack sizes is
required.

$. The proper boundary condition to be
imposed at the interface of the two
stress regions is that the crack
size not change. The values of
cycle ratio damage and probability
of failure will change at the inter~
face in general.

SYMBOLS

a crack half-size (i.e., half
length)

ac

ac critical values of crack half-

ac; size

a
'il : initial crack half-sgize
.12
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A material constant; true ultimate
stress

X average value of A

b specimen half-width

c constant of random fatigue curve

Co

c} constants of crack growth rate

C2 curves

D)

Die cycle ratio damage functions

D2

da

—_— crack growth rate

an 9 e

erfp error function defined by

Papoulis (7]

F(N) probability of failure in N

cycles

in. inches

K

K' stress intensity factor

Kj

&Ke fracture toughness

AKen  threshold stress intensity
factor

ksi thousands of pounds per sgquare
inch

N

N number of stress cycles

Nie

Ng number of stress cycles to

Na failure

8 sinusoidal stress amplitude

AS sinusoidal stress range

sec trigonometric secant

14 73 root-mean-square

b 4 damage law correction factor

e

dummy variable
geometrical parameter

dummy variable
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fatigue curve slope parameter
standard deviation of A
random rms stress value
constants of crack growth rate
curves

metre

millimetre

megaPascals
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RANDOM FATIGUE DAMAGE APPROACH TO MACHINERY MAINTENANCE

T. S§. Sankar, G. D. Xistris
Concordia University
Montreal, Quebec, Canada

G. L. Ostiguy
Ecole Polytechnique
Montreal, Quebec, Canada

Machinery vibrations are employed to obtain an estimate of the
stresses in critical mechanical elements under operating condi-
tions. The amount of fatigue damage incurred as a result of
these stresses is computed using a linear damage accumulation
law and expressions are developed for the expected value of the
damage sustained over a specific time period. The behavior of
these statistical parameters with operating time and with various
system fatigue properties is discussed., The calculated damage
provides a reliable indication of the remaining trouble-free
life and can be employed in the maintenance field to monitor
the performance of industrial machinery.

INTRODUCTION

A significant part of the operating
cost of industrial processes is due to
machinery down-time and periodic main-
tenance. These expenditures are the
direct result of defects either inherent
in individual elements, or introduced
during the assembly of components. The
severity of these defects is progres-
sively enhanced during normal operation
of machinery resulting in certain dete-
rioration of overall unit performance
and this is commonly known as "wear".
When equipment performance falls below
design specifications, the unit is
deemed to have failed. Such failures
may be catastrophic, if arising from
rapid degradation of defective parts, or
gradual, if caused by normal wear and
tear.

Catastrophic failures are asso-
ciated with the presence of a single
dominant defect such as a badly damaged
antifriction bearing, severe misalign-
ment of rotors or gross imbalance of
rotating elements. Dominant defects
produce high stress values in the af-
fected components and failure occurs
dfter a small number of operational
cycles. The resulting stress histories

are then narfow band, high amplitude
processes and hence, the nature and
source of the defect can be easgily iden~
tified through a frequency analysis. On
the other hand, normal wear failures
which are associated with wide band, low
amplitude stress histories, cannot be
asgsesgsed by any of the currently avail-
able machinery monitoring techniques.

This paper proposes a machinery
health monitoring procedure based on the
estimates of the accumulation of gradual
fatigue damage in specific machine ele-
ments. The characteristics of the in-
cremental damage funccions incurred by
the critical components of a machine
during its life span, are inferred from
the vibration histories, that form
generally a random process, obtained at
appropriate locations of the machine
system. The damage increments are sub~
sequently employed to calculate the
amount of fatigue life expended in a
given time interval, thus providing an
estimate of the remaining expected
maintenance-free life of the equipment.

MACHINERY RESPONSE AS A CONDITION
MONITOR

Machinery breakdowns occur due to

Lt VOV TR

LI

»

-
in

Y,

o T

SRS

PR
A .

:
]

POV

"4 YTy T W

e® wm &t = 2

oty At N

@
.

LSS
LS \i O
oGl
haha !
aatly 2t
"n":‘;‘,

2
55

b &

ﬁs

4

\'Q “'
W
éi*unr:_

e



16}

‘T

<+ &

the gradual accumulation of fatigue
damage incurred by the machine elements
which are subjected to fluctuating
stresses. These stresses are caused by
a resultant excitation representing the
complex combined effect of imbalance in
the rotating elements, misalignment
between segments of rotors installed
with multiple rigid supports, bearing
friction and the presence of bearing
defects, the meshing of gear trains,
differences in thermal expansion charac-
teristics of parts in the same sub-
assembly and other internal, as well as,
external load variations imposed by the
operating environment.

Individual direct measurement of
each of these disruptive forces is not
practical. Neither is it possible, to
obtain their combined effect through the
actual stress histories under different
operating conditions. However, measure-
ments of the vibratory response history
are feasible and in most cases avail-
able. Under the assumption that ma-
chinery elements are elastic and iso-
tropic, a simple relationship between
the response measured at an exterior
point and the stress at a corresponding
element within the machine, may be
developed. For the purpose of defining
a machinery maintenance program, in
general it may be sufficient, as well as
practical, to assume a linear relation-
ship between stress and response in the
form

s(t) = a x(t) (Y (1)

where, s(t) is the stress history of one
or more machine elements which is re-
flected by a response history x(t) at a
judiciously selected measurement loca-
tion. The constant of proportionality
a, takes into account all the combined
effects of material and system proper-
ties such as damping, stiffness and con-
figuration relative to the particular
monitoring location. In complicated
machines where several monitoting sta-
tions may be used, o will assume dif-
ferent values reflecting the internal
structure and properties at each parti-
cular location.

The use of equipment relbonle x(t)
as a condition monitoring parameter
appears to be a widely accepted practice
in the machinery maintenance field. The
current literature, contains several
successful applications of this tech-
nique [1,2,3)*,

*[ ] designates references listed at
the end.
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CHARACTERIZATION OF THE STRESS-RESPONSE
HISTORY

In view of the assumed linearity
between stress and response functions,
8(t) can be characterized indirectly by
assigning to it all the observed attri-
butes of x(t).

The first of such attributes is
that the stress history s(t), consti-
tutes a sample function of an ergodic
Gaussian, stochastic ensemble. The large
number of factors which contribute to
the presence of s(t), together with the
surface texture characteristics of the
interacting mechanical components, dic-
tate that the stress process in machines
wust be stochastic with possibly a
Gaussian distribution {4]. The ergodi-
city assumption implies that the stress
process may be represented by a single
sample function. Although no analytical
or experimental proof of ergodicity
exists, the observed good correlation
between vibration and defects for
similar pieces of equipment [2], would
appear to justify such a treatment.

The second constraint on s(t) is
that it must be considered piecewise
stationary. Experimental evidence [1,2]
shows that the inevitable deterioration
of dimensional clearances coupled with
the progressive worsening of latent
mechanical and materjal defects are
associated with an increase in vibration
levels. Thus, over the complete life
span of a machine, the observed response
and hence s(t) must be nonstationary.
This phenomenon will be quite dominant
in the later stages of operation when
the rate of deterioration is generally
accelerated. However, if the total
operating period is subdivided into AT;
intervals, it is always possible to
consider the process as stationary with-
in each segment AT; (3).

The third constraint deals with the
spectral characteristics of s(t). Be-
cause of the many contributing factors
and their related harmonics, s(t) is
expected to be wide band. This asser-
tion is gsubstantiated in part by the
evidence that modern equipment oper-
ating under normal conditions, exhibit
a relatively flat velocity spectrum up
to about 1.5 kHz {[2]). Narrow band
stress histories are associated with
equipment where a single defect, such as
a strong first order imbalance, is pre-
dominant. Defects of this type lead to
very rapid catastrophic breakdowns as
opposed to failures resulting from the
gradual accumulation of damage. Since
predominant defects can be easily
identified and, as a rule, have to be
rectified immedlately, purely narrow
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band stress histories are not consider-
ed in this investigation as a contri-
buting factor for gradual deterioration
of equipment.

Machinery vibration histories that
are piecewise stationary exhibit zero
mean over a limited number of cycles.
Since machine systems are rigidly at-
tached, it follows that even though
instantaneous values of x(t), x(t) and
x(t) may not necessarily be zero, the
mean values of the vibratory response
process and the corresponding rate
parameters, over an appropriately chosen
period of time, must tend to zero.

The final constraint on s(t) is
invoked in order to assure that the
primary mode of machinery breakdown is
accumulated damage under random fatigue.
This is accomplished by assuming that
s(t) is bounded so that spmax does not
exceed the component ultimate or yield
strength. The effect of placing an
upper limit on x(t) and thereby on s(t),
is to eliminate failures caused by the
sudden application of overloads which
are outside the domain of normal oper-
ating conditions. Such overloads may
arise from the presence of distinct
machinery defects or external impact
type loads which if not rectified imme-
diately, will lead to premature failure.
It should be pointed out, that predo-
minant defects and extraneous impacts
are practically always associated with
narrow band spectra. Also in order to
facilitate the analysis, it has been
assumed that s(t) is continuous and
differentiable at least twice.

FATIGUE DAMAGE FOR MACHINERY COMPONENTS

Because of the experimental scatter
in the reported material fatigue proper-
ties, it is customary to treat fatigue
life as a random variable having a
particular mean value and probability
distribution at failure. It is reason-
able therefore, to define the fatigue
damage D(AT), incurred as a result of
the ensemble of streas histories s(t)
during the time interval AT, as a
varjable. In order to interpret the
behavior of D(AT), it is desirable to
establish its probability distribution.,
This would be possible if a large number
of identical machines were subjected to
the same operating and environmental
conditions. Clearly, this is a formi-
dable undertaking. However, for the
purpose of developing a machinery health
monitoring program based on accumulated
damage estimates, it is sufficient to be
able to calculate the mean value of the
random variable D(AT).

The random variable D(AT) repre-

2.0 2 & Bt B 01 4] Yol ta e A,
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sents the contributions of the indivi-
dual fatigue damage increments &D,
accrued as a result of each stress cycle
occurring within the time interval AT.
Here, it can be assumed that the éD's
are directly proportional to the ampli-
tude of the corresponding stress cycles.
This is essentially known as the linear
fatigue damage hypothesis (5,6) which
states that the amount of damage incur-
red as a result of a single whole stress
cycle of amplitude s is related to the
total, number of cycles N(s), that the
specimen can withstand at a constant
stress amplitude s. The magnitude of
the incremental damage functions 6D, can
:o calculated from material fatigue

ata.

The most widely used method of pre-
senting material fatigue properties is
the s-N curve where the stress amplitude
is plotted against the number of cycles
for different loading arrangements. How-
ever, when the stress history is a wide
band stochastic process, the stress
intensity cannot be adequately charac-
terized by the amplitude parameter
alone. In such cases, it has been sug-
gested that a plot of og-N is a more
meaningful method of defining fatigue
properties (7). Obviously, the calcu-
lation of 6D and thereby D(AT), will
depend on the method used to correlate
the fatigue data appropriate to each
case.

CYCLES, N

Pig. 1: Typical s-N Representation of
rntigu- Data for Constant
Amplitude Btress Histories.
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DAMAGE ESTIMATES USING s-N CURVE

Figure 1 depicts a typical s-N
curve for constant amplitude stress
histories. An approximate correlation
of the reported experimental results is
given by

9
N(s) = [%] (2)

where C is a material constant and the
exponent 8 is the negative reciprocal of
the slope of the mean s-N curve. Since
machinery stresses are expected to have
a zero mean over a number of cycles, by
approximating each cycle to a sinusoiad,
any stress peak amplitude can be found
from the relation

s-.lﬂ (3)

w?

where w is the circular frequency of the
corresponding cycle. 1In several cycles
of a wide band process, the average

circular frequency can be represented by

w = 27 E[n] (4)

where E(n] is the expected value of the
frequency of -the peaks for any station-
ary random process.

Combining Equations (2), (3) and
(4) and taking into account the inverse
relationship between 6D and N(s), it can
be shown that

so(5]) = ’_u__

c(2r Eln))?

0
(5)

To obtain an expression for the expec-
tation of the damage accumulated in time
AT, the interval AT is subdivided into
smaller segments. The condition for a
stress peak to occur within any of the
smaller time segments and thereby cause
an increment of damage equal to 6D(|s]|)
to be accrued, is given by the joint
probability density, function for all
possible 8(t) with s(t) = 0. Following
a procedure analogous to [8], it can be
shown that

E(D(am )=aT J_ 8D(|3)) |3|pl0,5)a3
(6)
where the joint probability density

function p(#=0;i) has been written as
p(o,s).

For a normal process with zero
mean, the joint probability density
function p(0.8) is [9]

P(o.i) = iﬂ—-‘l’..l?i G-;z/zoiz (7)

Also, Lin [10] has shown that

Os
27 oy

E[n) = (8)

Substitution of Equation (8) into Equa-
tion (5) and using the resulting expres-
sion for 6D(|s|) together with Equation
(7) into Equation (6), the mean accumu-
lated damage can be obtained as

E([D(A AT V2 ol‘ 0 1 0; !
—  m— (,. —
[ ( T)] n ( [+ 8) (!. ) (o.u)

This, expressed in terms of the response
process parametersg for application to
machinery health monitoring reduces to

. 8=-1
E(D(AT)] = AT A(8) (30p)° (%%;.-) 9
0
where a(8) = {28 + 1)R0°",
o
zZ = il

and R = 0303/0g0%

In most cases where the processes
are orderly, R is expected to be equal
to unity. The material response para-
meter Z embodies the effects of damping,
configuration and fatigue strength par-
ticular to each measurement source.

DAMAGE ESTIMATES USING COg~N CURVE

Figure 2 illustrates an alternate
method of presenting fatigue test data.
Such data are obtained by subjecting
specimens of the same material and geo-
metry to a continuous stationary random
stress process {s(t)}, under identical
environmental conditions. A sample
function of {s(t)} is illustrated in
Figure 3.

Wirsching and Haugen (7] have pos-
tulated that each tensile peak of {s(t)}
causes a certain amount of damage. The
total damage in time AT, due to all
peaks which lie in the interval [sy,
sy + As) is given by

n, (AT)
-J'T’ Bj for Sj>°

8Dy (AT) = (10)
0 for sjso

where ny4 (AT) is the expected total num~
ber of ltrels peaks with amplitude in
the interval [lj, 8y + As] in time AT,
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Fig. 2: Typic¢al o0g-N Representation of
Fatigue Data for Random Stress
Histories.
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Fig. 3: Sample Function of a Wide Band
Random Stress Ensemble

¢ is the negative reciprocal of the
slope of the random fatigue curve and A
is a random variable which reflects the
varjability of strength properties of
similar specimens of a given material.
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Denotin? the total expected number
:ﬁapeaks of {s(t)} in tine AT by n(AT)
n

nj(AT) = n(AT) p(sj)As (11)

where p(s3) is the probability densit
function of the peak heights of {s(t)
covering the interval (s + As].
Defining a non-dimensionil rzndom vari-
able k = 3/0g and integrating Egquation
(10) with (11) yields

p(ar) = BUT) o4 g

O
where 8 = / k?® p(k)dk. The integral 8
which is a°function of the spectral and
mean value properties of the stress
process has been computed in (7). Values
of B appropriate to machinery elements

(12)

have been summarized in Table 1. From
Equation (8)
n(AT) = g-"-' A (13)

Substituting Equation (13) into Equation
(12) and averaging both sides of the
resulting expression yields in terms of
the response process parameters

¢ 9%

E[D(AT)] = AT(2.0,) (3;)1' (14)
where
Zr = 'c_a; ’

cr = E(A)/?

and
RB
F = 2

Z, is the material response parameter
for random fatigue and the constant R
has been defined in Equation (9).

DISCUSSION AND ANALYSIS OF RESULTS

Figure 4 shows the variation of
E[D(AT)] with operating time for dif-
ferent values of the exponent of the
appropriate fatigue curve as predicted
by Equations (9) and (14). It is appa-
rent from the nature of these equations,
that in both cases the expected value of
the accumulated damage increases linear-
ly with operating time. The upper limit
for E[D(AT)] is taken as unity in accor-
dance with Miner's criterion.

Further, Figure 4 shows that .
E[(D(AT)] varies invorlely with ¢ angd 0.
For example, after 10° seconds of opera-
tion, the mean accrued damage is

w A v

5‘2*,§§§§§§§ s 'j % -w: T ?f: m
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TABLE 1
Values of the Punction 8 for R = 1.0 and Zero Mean Stress Calculated from (7).
The Parameter vy is the Ratio of Expected Number of Zero Crossings from Below
per Unit of Time to the Expected Number of Peaks per Unit of Time.

¢ y=1.0 Yy = 0.9 y=0.8 Yy =0,7 Yy = 0.6 Yy = 0.5
3 3.776 3.399 3.021 2.719 2.417 2.115
5 19.30 17.37 15.44 13.51 11.97 - 10.42
? 132.3 119.0 105.8 92.58 79.35 68.77
9 | 1215 1093 971.6 825.9 704.4 607.3
TABLE 2
Material Patigue Constants for Stress Values in psi
Constant Amplitude Random
Material and Loading fomm
) c Ref. ¢ Cr Ref.
Mild Steel -~ Axial s s
Su = 365 MPa (53 ksi) 11.5 | 0.9x10 [12) 7.2 1.5x10 (15)
Al 2024 - T3 s s
Bending 8 1.0x10 [13) 5.7 2.7x10 (14)
Al 2024 - T3 s s
Axial 6.7 | 1.2x10 [14) 5.8 2.1x10 [15)
Al 7075 - Té6 s s
Bending 6.7 | 1.7x10 (14) 3.2 7.8x10 {151}

1.3 x 10~* and 9.1 x 10~? for ¢ = 7 and
¢ = 5 respectively. Large values of ¢
imply a relatively flat Jg-N curve and
therefore, for a given random stress
environment, the mean number of cycles
to failure will be high. Thus, for
large ¢, each stress cycle is associated
with a small damage increment resulting
in the behavior illustrated in Figure 4.
Similarly after 10° seconds of oporltion
E[(D(AT)] attains values of 3.0 x 10-*

for 6 = 9 and 0.7 for 6 = 5. This vari-
ation is consistent with the interpreta-
tion of the s~N curve. 8ince ¢ and 0
are independent, direct comparison of
E(D(AT)] for identical values of the
exponents is not meaningful. In general,
values of ¢ tend to be somewhat lower
than 6 for the same material subjected
to the same stress mode. This is evi-
dent in Table 2 where fatigue parameters
for typical materials are summarized.

E[D(AT)) is also dependent on the
material response parameter. Table 2
shows that 2y is usually smaller than 2

as can be inferred from the general
trend of the constants C and Cr. Small
values of C and Cr are characteristic of
materials with low fatigue resilience
and hence, a low number of cycles to
failure. PFor a given a, small C and Cp
will result in large Z and 2y yielding
high damage accumulation rates. This is
illustrated in Figures 5 and 6 where it
is seen that E[D(AT)]/AT increases
linearly with 2 and 2y respectively when
plotted on log-log axes.

Figures 5 and 6 also delineate the
inverse dependence of E([D(AT)]/AT on ¢
and 6. However, the influence of the
fatigue exponents on E[D(AT)])/AT appears
to diminish with increasing values of
the material response parameter. This
is manifested by the convergence of the
plotted curves. It would appear that
for the range of ¢ and ¢ values consi-
dered in the investigation and for high
values of the corresponding material
response parameter, E(D(AT)]1/AT may be
approximated as a function of 2 or 2,
only.
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g: It is evident from the above dia- procedure is uneconomical and imprac-

Y cussion that estimates of E[D(AT)] will tical. An alternate approach is to

) involve either form of the material approximate the ideal continuous record

2 response parameter as indicated above. with periodic discrete measurements

& wWhen analyzing the performance of simi- each lasting At seconds taken AT inter-

» lar machines, it can be reasonably vals apart as illustrated in Pigure 7.

4 assumed that they possess the same This method would be acceptable provi-

"y structural characteristics (this im- ded that the AT intervals are chosen in

13 plies that the constant o is the same) the following manner: Select a signal

?{ and therefore, the rate of damage accu- recording length At which is adequate

¥ o mulation will depend only on the stan- to represent the salient signal charac-

-~ dard deviations of the response signals. teristics and it is compatible with the

A machine which exhibits a high value
of E[D(AT)])/AT will reach its fatigue
limit before a unit with a correspond-
ingly lower damage accumulation rate.
In all other applications, it becomes
necessary to select a value of Z or 2,
appropriate to each location. Preli-
minary data developed in connection with
this investigation have established that
for most industrial machines 0.1<2<50.
This result was obtained by extrapo-
lating available vibration and perfor-
mance records of torsional systems in
the 1000 to 3000 HP range and elec-
trically driven pump sets up to 100 HP.
The wide range in the observed values
of 2 clearly indicate the need for
further experimental work in this area.

CUMULATIVE DAMAGE AS A MONITORING TOOL

Since the primary cause of normal
wear machinery breakdowns has been iden-
tified as some form of fatigue failure,
the cumulative damage calculated from
Equations (9) or (14) can be employed
as a condition monitoring tool in an
industrial equipment maintenance scheme.
In such an application, the E[D(AT)]) can
be interpreted as an indication of
the average amount of trouble-free life
expended over a given operating period.
Alternately, it is an estimate of the
probable remaining useful life of
machine systems.

The maintenance programs proposed
in this investigation require measure-
ment of the vibratory response time
history at selected points of the ma~
chine system. The actual number of
signal monitoring stations will depend
on the complexity of the machine struc-
ture. For most common equipment the
number of measurement sources corres-
ponds to the number of principal bear-
ings in the system.

The standard deviations required in
Equations (9) and (14) may be obtained
for each signal using digital data ana-
lysis techniques. The relative fluc-~
tuations in these process rate para-

storage capability of the digital data
processing devices used for computing
the standard deviations. The choice of
a particular At defines the limit of
accuracy which is attainable in the
determination of the process rate para-
meters. The interval AT between succes-
sive records of At duration, should be
such that the variation in the standard
deviations calculated from these two
signals does not exceed the confidence
limits dictated by the choice of At. If
the rate parameters obtained at Atj; and
Atj,) differ by more than what can be
attributed to the influence of the
recording length used, then over this
AT, the calculation of E{D(AT)] should
be made using mean values for the rate
parameters obtained from Adtj and Atj,;.
Subsequent measurements should be nasc
at smaller intervals, i.e. AT{,1=AT;/2.
As long as the rate parameters renain
relatively constant on the basis of the
above described procedure, the process
can be considered stationary and
E(D(AT)] calculated over the sum of all
the intermediate ‘ATj. For machinery
approaching failure (i.e., I E[D(AT;)]
< 0.7), the deviation of theirate para-
meters can be expected to be signifi-
cant and proper care must be exercised
in the choice of At's and AT's.

Initial experimental evidence indi-
cates that this method of ascertaining
machinery reliability is promising,
particularly in cases where previous
experience of equipment vibratory beha-
vior is unavailable. The main advan-
tage of this approach is that machinery
condition assessment can be made in
terms of component fatigue properties
and the actual stress histories which
arise under operating conditions.

ACKNOWLEDGMENT
This research was carried out under

FCAC Grant 042-110 from the Government
of Quebec.

V) meters depend primarily on the length of
sy the signal record chosen [11l]). Ideally,
L ¥ the signal should be available in a con-

tinuous form. However, such a monitoring
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